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Extraction of lateral eigenmode properties in thin film bulk acoustic wave
resonator from interferometric measurements
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A heterodyne laser interferometer is used to study acoustic wave fields excited in a 1.8 GHz AlN
thin film bulk acoustic wave resonator. The electrical response of the resonator exhibits a strong
thickness resonance onto which spurious modes, caused by lateral standing plate waves, are
superposed. Optical interferometer measurements are used to extract dispersion curves of the
laterally propagating waves responsible for the spurious responses. A discrete eigenmode spectrum
due to the finite lateral dimensions of the resonator is observed. An equivalent circuit model for a
multimode resonator is fitted to the mechanical resonator response extracted along a single curve in
the dispersion diagram, and is used to determine properties, such as Q-values, of the individual
lateral eigenmodes. Measured wave field images, extracted dispersion curves, and the eigenmode
spectrum with the model fitting results are presented. © 2010 American Institute of Physics.
�doi:10.1063/1.3299012�

Laser interferometry is a versatile, noncontact optical
method that provides direct information on the mechanical
wave fields excited in microacoustic structures. Optical prob-
ing of gigahertz-range bulk-acoustic waves �BAWs�1–7 has
proven to be very useful for studying the operation of BAW
devices, revealing their loss mechanisms, helping to refine
simulation models and for obtaining materials parameters.
The fields can be measured with a lateral resolution better
than 1 �m and with smallest detectable vibration amplitudes
in the subpicometer range.

The so-called solidly mounted resonator under study
here is composed of a piezoelectric thin film sandwiched
between metal electrodes and of an acoustic Bragg reflector
that serves to acoustically isolate the device from the sub-
strate. The resonator operates in the lowest order longitudinal
thickness �LT1� mode, in which about half an acoustic wave-
length is contained within the thickness formed by the piezo-
electric film and the metal electrodes. Since the LT1 mode
can also propagate horizontally as a plate wave, standing
waves are formed within the laterally finite-sized resonator.
These lateral eigenmodes induce ripple in the electrical re-
sponse near the main resonance. For use in frequency control
applications and in filtering, effective suppression of these
spurious electrical responses is desired. Therefore, the prop-
erties of the lateral eigenresonances are of great interest, to
enable deeper understanding of the device physics and to
further develop modeling.8–11

In this letter, extraction of detailed information on indi-
vidual lateral eigenmodes from the measured acoustical re-
sponse is demonstrated. We present interferometric measure-
ments of the acoustic wave fields on a 1.8 GHz AlN thin film
BAW resonator. Plate wave dispersion curves are calculated
from the measured wave fields, and the vibration amplitudes
extracted along the LT1 dispersion curve are presented as a
function of frequency. Individual resonances are character-

ized by fitting a mechanical resonator equivalent circuit
model to the measured vibration data.

The experimental method is demonstrated with a 1820
MHz AlN based resonator utilizing an acoustic reflector con-
sisting of five alternating layers of W and SiO2 for substrate
isolation. The reflector is optimized for high Q according to
the method of Marksteiner et al.12 and for obtaining a desired
type of plate wave dispersion13 to ensure lateral energy trap-
ping. The resonator structure is schematically presented in
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FIG. 1. �Color online� �a� Microscope image of the sample wire-bonded to
a jig for interferometric measurements. �b� Schematic cross sectional view
of the layer stack of the sample with measured layer thicknesses �SEM�. ��c�
and �d�� Magnitude and phase of impedance obtained with wafer level mea-
surement. Main figures of merit are provided as an inset in �c�. The electrical
response features spurious resonances.
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Fig. 1, along with a photograph and an electrical response
measured on wafer. The electrical response features a strong
resonance-antiresonance behavior, onto which sharp spurious
oscillations are superposed, making direct extraction of the
electrical figures of merit for the main resonance difficult.
Approximate values are indicated in Fig. 1.

Interferometric measurements of the resonator were car-
ried out with a scanning heterodyne laser interferometer.5

The heterodyne concept enables acquisition of the absolute
amplitude of the surface vibration independently of the local
optical surface reflectance. The heterodyne signal also carries
phase information of the acoustic wave field, measured si-
multaneously with the amplitude data at each measurement
point.

The wave field measurements feature an area of 248.49
�248.49 �m2, including the circular active area of the reso-
nator and some outer region. A lateral scan step of 0.99 �m
was used, resulting in scans of 252�252 �63 504� data
points. In order to study the acoustic frequency response in
detail, the interferometer measurements were carried out at
frequencies ranging from 1600 to 2000 MHz. The frequency
range was covered using three different frequency steps: a
step of 1 MHz between 1600–1800 MHz and 1950–2000
MHz, 0.5 MHz between 1800–1815 MHz and 1860–1950
MHz, and a finer 0.25 MHz step between 1815–1860 MHz
in order to provide better resolution near the resonance fre-
quency fs and the frequencies of the first LT1 eigenmodes.
The sample was driven with a nominal input power of
+5 dBm from a 50 � transmission line.

Carrying out interferometric measurements at a number
of frequencies allows us to apply Fourier transform tech-
niques to the measured wave fields at each frequency and
thereby to determine the mode spectrum of the resonator as a
function of frequency and present it as a plate wave disper-
sion diagram.6,14–17 The measured dispersion diagram is
shown in Fig. 2. The LT1-dispersion curve is identified as the
bright red curve emerging at just above 1820 MHz, for
which the frequency increases monotonically with the lateral
wave number �k��. For a simulation of the dispersion prop-
erties, see Ref. 18. Furthermore, quantization of the LT1
wave into lateral high-Q eigenmodes due to the finite lateral

size of the resonator results in a chain of discrete maxima
seen along the dispersion curve. The lower bright red curve
is identified as the second harmonic shear thickness mode
�ST2�. In addition, weaker modes with higher k� are also
excited.

The measured dispersion diagram can be further used to
investigate the details of the LT1 resonances by extracting
the amplitude values �ALT1

�f�� along a single dispersion
curve �see Fig. 3�. The dispersion diagram presents a decom-
position of the measured wave motion to the different eigen-
modes at each frequency, and therefore, by following a
single dispersion curve, the contribution of those particular
eigenmodes can be isolated and further investigated.

The electrical behavior of a multimode resonator is often
presented with a modified Butterworth van Dyke equivalent
circuit with several resonance legs.19 There is a mechanical
analog to the electrical circuit, where the current drawn by
the circuit is proportional to the mechanical vibration ampli-
tude, and can be expressed as

�1�

where C0 is the static capacitance, a resonator-geometry-
related constant that is independent of the eigenmode p, V is
the driving voltage, kp the electromechanical coupling coef-
ficient, Qp the quality factor and �p the angular resonance
frequency of the eigenmode p. The shape of the resonance
peak is determined by the part labeled Fm���, whereas the
part Ap is a mode-dependent constant. To demonstrate the
extraction of the parameters, the properties of the 6 first
eigenresonances of the LT1 dispersion curve are determined
by fitting Eq. �1� to the extracted LT1 amplitude data, keep-
ing the first term as a free offset parameter Boffset,
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FIG. 2. �Color� Dispersion diagram calculated from the measured vibration data and measured amplitude distributions most closely corresponding to the fitted
6 first eigenfrequencies. Due to the finite lateral dimensions and high-Q resonances, the LT1 dispersion curve �marked with dashed black line� is seen in the
dispersion diagram as a chain of discrete maxima.
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The resulting resonance frequencies fp and values of Qp are
shown along with the original data �ALT1

�f�, solid line� and
the function fit �circles� in Fig. 3. The measured amplitude
distributions corresponding to the 6 first LT1 eigenfrequen-
cies are shown in Fig. 2.

There is an excellent correspondence between the LT1
amplitude line profile extracted from the dispersion curves
and the fitted M���, validating the equivalent circuit based
representation of the multimode resonator. It is to be noted
that the left-hand-side of the first peak in Fig. 3 lies below
the cutoff frequency of the LT1 mode, where the vibration
consists of mainly forced �k���0 vibration, whereas the right
hand side is above the cutoff, where lateral propagation is
possible. This explains the asymmetric shape of the first
peak. The approximate Q-value of Q�1100 of the main
resonance determined from the electrical frequency response
corresponds well to the Q-value of 1300 obtained via the
interferometer measurements. The Q-values of the following
resonances �Q2−Q6� range from 670 to 820, which is clearly
lower than that for the main resonance. The Q-values of the
individual lateral resonances are affected by several loss
mechanisms, such as electrical and viscous losses, acoustic
leakage laterally and through the reflector, etc. A deeper
analysis of these effects is beyond the scope of this letter.

The acoustic wave fields excited in a 1820 MHz AlN
solidly mounted BAW resonator were measured in detail.
The discrete set of lateral eigenmodes excited in the resona-

tor is seen in the measured dispersion curve as a chain of
maxima rather than as a continuous mode branch. Following
a measured dispersion curve enables us to determine the
properties of the individual eigenmodes �resonances� by fit-
ting a mechanical response function to the measured vibra-
tion data. This approach facilitates direct experimental ex-
traction of the eigenfrequencies, Q-values, and relative
strengths of these resonances. The relative strengths of the
coupling coefficients, kp, are available from the model
through the Ap parameter, but obtaining their absolute values
would require exact knowledge of the relation between the
mechanical amplitude and the resonator current and leads to
considerations beyond the scope of this letter. This direct
characterization of the LT1 eigenmodes yields valuable in-
formation on the underlying device physics and also feed-
back to the component designers.

K. Kokkonen thanks the Finnish Cultural Foundation
and the Nokia Foundation for scholarships.
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FIG. 3. �Color online� Extracted vibration amplitudes ALT1
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results of the mechanical equivalent circuit model fitted to the 6 first eigen-
modes �circles�. The resulting eigenfrequencies and Q-values are presented
as an inset. There is an excellent correspondence between the extracted
mechanical response and the function fit, indicating that the LT1 dispersion
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