22 research outputs found

    Stroke-Like Presentation Following Febrile Seizure in a Patient with 1q43q44 Deletion Syndrome

    Get PDF
    Hemiconvulsion–hemiplegia–epilepsy syndrome (HHE) is a rare outcome of prolonged hemiconvulsion that is followed by diffuse unilateral hemispheric edema, hemiplegia, and ultimately hemiatrophy of the affected hemisphere and epilepsy. Here, we describe the case of a 3-year-old male with a 1;3 translocation leading to a terminal 1q43q44 deletion and a terminal 3p26.1p26.3 duplication that developed HHE after a prolonged febrile seizure and discuss the pathogenesis of HHE in the context of the patient’s complex genetic background

    Stroke-Like Presentation Following Febrile Seizure in a Patient with 1q43q44 Deletion Syndrome

    Get PDF
    Hemiconvulsion–hemiplegia–epilepsy syndrome (HHE) is a rare outcome of prolonged hemiconvulsion that is followed by diffuse unilateral hemispheric edema, hemiplegia, and ultimately hemiatrophy of the affected hemisphere and epilepsy. Here, we describe the case of a 3-year-old male with a 1;3 translocation leading to a terminal 1q43q44 deletion and a terminal 3p26.1p26.3 duplication that developed HHE after a prolonged febrile seizure and discuss the pathogenesis of HHE in the context of the patient’s complex genetic background

    Aortopathy in the 7q11.23 microduplication syndrome

    Get PDF
    The 7q11.23 microduplication syndrome, caused by the reciprocal duplication of the Williams-Beuren syndrome deletion region, is a genomic disorder with an emerging clinical phenotype. Dysmorphic features, congenital anomalies, hypotonia, developmental delay highlighted by variable speech delay, and autistic features are characteristic findings. Congenital heart defects, most commonly patent ductus arteriosus, have been reported in a minority of cases. Included in the duplicated region is elastin (), implicated as the cause of supravalvar aortic stenosis in patients with Williams–Beuren syndrome. Here we present a series of eight pediatric patients and one adult with 7q11.23 microduplication syndrome, all of whom had aortic dilation, the opposite vascular phenotype of the typical supravalvar aortic stenosis found in Williams–Beuren syndrome. The ascending aorta was most commonly involved, while dilation was less frequently identified at the aortic root and sinotubular junction. The findings in these patients support a recommendation for cardiovascular surveillance in patients with 7q11.23 microduplication syndrome. © 2014 Wiley Periodicals, Inc

    PTEN Deficiency Mediates a Reciprocal Response to IGFI and mTOR Inhibition

    Get PDF
    Recent evidence implicates the insulin-like growth factor (IGF) pathway in development of Ewing Sarcoma, a highly malignant bone and soft tissue tumor that primarily affects children and young adults. Despite promising results from preclinical studies of therapies that target this pathway, early phase clinical trials have shown that a significant fraction of patients do not benefit, suggesting that cellular factors determine tumor sensitivity. Using FAIRE-seq, a chromosomal deletion of the PTEN locus in a Ewing sarcoma cell line was identified. In primary tumors PTEN deficiency was observed in a large subset of cases, although not mediated by large chromosomal deletions. PTEN loss resulted in hyper-activation of the AKT signaling pathway. PTEN rescue led to decreased proliferation, inhibition of colony formation, and increased apoptosis. Strikingly, PTEN loss decreased sensitivity to IGF-1R inhibitors but increased responsiveness to temsirolimus, a potent mTOR inhibitor, as marked by induction of autophagy. These results suggest that PTEN is lost in a significant fraction of primary tumors and this deficiency may have therapeutic consequences by concurrently attenuating responsiveness to IGF-1R inhibition while increasing activity of mTOR inhibitors. The identification of PTEN status in the tumors of patients with recurrent disease could help guide the selection of therapies

    Primary mediastinal B-cell lymphoma: detection of BCL2 gene rearrangements by PCR analysis and FISH

    Get PDF
    Primary mediastinal large B-cell lymphoma (PMBCL) has a characteristic clinical presentation, morphology, and immunophenotype, representing a clinically favorable subgroup of diffuse large B-cell lymphoma (DLBCL). By gene expression profiling (GEP), PMBCL shares features with classical Hodgkin lymphoma (cHL). Of further interest, BCL6 gene mutations and BCL6 and/or MUM1 expression in a number of PMBCLs have supported an activated B-cell (ABC) origin. Several studies, including GEP, have failed to detect BCL2 gene rearrangements (GRs) in PMBCL. An index case of t(14; 18)+ PMBCL prompted our study of the incidence of BCL2 GRs in PMBCL by polymerase chain reaction (PCR)/fluorescence in situ hybridization (FISH) analyses and its possible clinical impact. Twenty-five retrospectively identified, well-defined PMBCLs (five with cytogenetics) from three institutions were analyzed for a BCL2 GR by PCR/FISH analyses. The formalin-fixed, paraffin-embedded tissue blocks of 24 available cases were also analyzed by BCL2 immunohistochemistry (IHC). Of the five with cytogenetics, two had a t(14; 18) (q32; q21). Of the 25 analyzed by PCR, 2 had no amplifiable DNA (aDNA), including 1 t(14; 18)+ case. Of those with aDNA, two showed a BCL2 GR; by FISH analysis, three demonstrated a BCL2 GR. BCL2 protein expression by IHC analysis was variably detected in 21 out of 24 (strongly, uniformly expressed: 6, including all with a t(14; 18) or a BCL2 gene rearrangement; moderately weakly expressed in a subset of the malignant cells: 15). Available clinical follow-up of this BCL2+ subset showed a similar course to the other PMBCL cases. Our results imply that a subset of PMBCL [(4 out of 24 analyzed) in our series] may be of GC origin. A larger study is necessary to determine any clinical significance

    The effect of extreme spring weather on body condition and stress physiology in Lapland longspurs and white-crowned sparrows breeding in the Arctic

    Get PDF
    AbstractClimate change is causing rapid shifts in temperature while also increasing the frequency, duration, and intensity of extreme weather. In the northern hemisphere, the spring of 2013 was characterized as extreme due to record high snow cover and low temperatures. Studies that describe the effects of extreme weather on phenology across taxa are limited while morphological and physiological responses remain poorly understood. Stress physiology, as measured through baseline and stress-induced concentrations of cortisol or corticosterone, has often been studied to understand how organisms respond to environmental stressors. We compared body condition and stress physiology of two long-distance migrants breeding in low arctic Alaska – the white-crowned sparrow (Zonotrichia leucophrys) and Lapland longspur (Calcarius lapponicus) – in 2013, an extreme weather year, with three more typical years (2011, 2012, and 2014). The extended snow cover in spring 2013 caused measureable changes in phenology, body condition and physiology. Arrival timing for both species was delayed 4–5days compared to the other three years. Lapland longspurs had reduced fat stores, pectoralis muscle profiles, body mass, and hematocrit levels, while stress-induced concentrations of corticosterone were increased. Similarly, white-crowned sparrows had reduced pectoralis muscle profiles and hematocrit levels, but in contrast to Lapland longspurs, had elevated fat stores and no difference in mass or stress physiology relative to other study years. An understanding of physiological mechanisms that regulate coping strategies is of critical importance for predicting how species will respond to the occurrence of extreme events in the future due to global climate change

    The stress response is attenuated during inclement weather in parental, but not in pre-parental, Lapland longspurs (Calcarius lapponicus) breeding in the Low Arctic

    Get PDF
    AbstractBirds breeding at high latitudes can be faced with extreme weather events throughout the breeding season. In response to environmental perturbations, vertebrates activate the hypothalamic-pituitary-adrenal (HPA) axis and synthesize corticosterone, which promotes changes in behavior and physiology to help the animal survive. The parental care hypothesis suggests that the HPA axis activity should be downregulated during the parental stage of breeding to prevent nest abandonment. However, it is unknown what happens to HPA axis activity in response to severe weather at the transition from the pre-parental to parental stages of breeding. We sampled baseline corticosterone levels and the time course of corticosterone elevation over 60min of restraint stress and assessed body condition and fat stores in Lapland longspurs (Calcarius lapponicus) breeding in the Low Arctic in the presence and absence of snowstorms. The results showed that during the pre-parental stage, HPA axis activity was up-regulated in response to snowstorms, with corticosterone levels continuing to increase through 60min of restraint. However, once birds were parental, HPA axis activity was unaffected by snowstorms and levels peaked at 10min. Fat levels and body condition did not change in response to snowstorms but fat levels declined in males during the pre-parental stage. These data suggest that the parental care hypothesis can be applied to severe storm events; parental birds restrained the activity of the HPA axis, likely to focus on the reproductive effort that is already underway, while pre-parental birds greatly upregulated HPA axis activity in response to snowstorms to maximize self-preservation

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Timeless functions independently of the Tim-Tipin complex to promote sister chromatid cohesion in normal human fibroblasts

    Get PDF
    The Timeless-Tipin complex and Claspin are mediators of the ATR-dependent activation of Chk1 in the intra-S checkpoint response to stalled DNA replication forks. Tim-Tipin and Claspin also contribute to sister chromatid cohesion (SCC) in various organisms, likely through a replication-coupled process. Some models of the establishment of SCC posit that interactions between cohesin rings and replisomes could result in physiological replication stress requiring fork stabilization. The contributions of Timeless, Tipin, Claspin, Chk1 and ATR to SCC were investigated in genetically stable, human diploid fibroblast cell lines. Whereas Timeless, Tipin and Claspin showed similar contributions to UVC-induced activation of Chk1, siRNA-mediated knockdown of Timeless induced a 100-fold increase in sister chromatid discohesion, whereas the inductive effects of knocking down Tipin, Claspin and ATR were 4–20-fold. Knockdown of Chk1 did not significantly affect SCC. Consistent findings were obtained in two independently derived human diploid fibroblast lines and support a conclusion that SCC in human cells is strongly dependent on Timeless but independent of Chk1. Furthermore, the 10-fold difference in discohesion observed when depleting Timeless versus Tipin indicates that Timeless has a function in SCC that is independent of the Tim-Tipin complex, even though the abundance of Timeless is reduced when Tipin is targeted for depletion. A better understanding of how Timeless, Tipin and Claspin promote SCC will elucidate non-checkpoint functions of these proteins at DNA replication forks and inform models of the establishment of SCC
    corecore