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Abstract

Recent evidence implicates the insulin-like growth factor (IGF) pathway in development of Ewing 

Sarcoma, a highly malignant bone and soft tissue tumor that primarily affects children and young 

adults. Despite promising results from preclinical studies of therapies that target this pathway, 

early phase clinical trials have shown that a significant fraction of patients do not benefit, 

suggesting that cellular factors determine tumor sensitivity. Using FAIRE-seq, a chromosomal 

deletion of the PTEN locus in a Ewing sarcoma cell line was identified. In primary tumors PTEN 

deficiency was observed in a large subset of cases, although not mediated by large chromosomal 

deletions. PTEN loss resulted in hyper-activation of the AKT signaling pathway. PTEN rescue led 

to decreased proliferation, inhibition of colony formation, and increased apoptosis. Strikingly, 

PTEN loss decreased sensitivity to IGF-1R inhibitors but increased responsiveness to 
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temsirolimus, a potent mTOR inhibitor, as marked by induction of autophagy. These results 

suggest that PTEN is lost in a significant fraction of primary tumors and this deficiency may have 

therapeutic consequences by concurrently attenuating responsiveness to IGF-1R inhibition while 

increasing activity of mTOR inhibitors. The identification of PTEN status in the tumors of patients 

with recurrent disease could help guide the selection of therapies.
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Introduction

Ewing sarcoma is a malignant bone and soft tissue tumor primarily affecting children and 

young adults. Despite intensive chemotherapy, surgery and radiation therapy approximately 

50% of patients ultimately succumb to the disease. Ewing sarcoma is characterized by 

chromosomal translocations that fuse a member of the TET family to one of a subset of ETS 

transcription factors (1, 2). Eighty to eighty-five percent of Ewing Sarcoma tumors contain 

t(11;22)(q24;q12) generating an in-frame fusion of EWSR1 to FLI1 (2). The resulting 

chimeric EWS-FLI1 protein is a potent transcriptional modulator that regulates multiple 

genes implicated in malignant transformation (3, 4).

Several lines of evidence support a role for the insulin-like growth factor (IGF) pathway in 

the development of Ewing sarcoma. EWS-FLI1 regulates IGF1 in Ewing sarcoma cell lines 

and is induced by EWS-FLI1 in mesenchymal stem cells (5-7). IGF-1 and its receptor 

(IGF-1R) are expressed in tumors, and IGF-1 expression in cell lines leads to autocrine 

activation (8, 9). IGF-1 signaling is necessary for the survival and proliferation of Ewing 

sarcoma cells (10, 11), transformation of murine fibroblasts by EWS-FLI (12) as well as for 

normal bone development (13). The promising results of preclinical trials targeting IGF 

pathway in Ewing Sarcoma has made it an attractive therapeutic target (14-17). However, 

studies of IGF-1 and IGF-1R inhibitors in early phase clinical trials have shown a limited 

response rate (18-20). A biomarker predictive of individuals who may respond to IGF1-

mediated treatment remains to be identified (21, 22).

IGF-1 bound to IGF-1R initiates a signaling cascade through the PI3K pathway resulting in 

phosphorylation of downstream targets including AKT. Phosphorylation of AKT at 

serine-473 (S473) and threonine-308 (T308) promotes cell cycle progression, cell survival, 

migration, and metabolism through differential interactions with multiple substrates 

including mTOR (23, 24). Signaling through the PI3K pathway is attenuated by PTEN 

through dephosphorylation of PIP3 (25). The loss of PTEN results in increased accumulation 

of PIP3 and AKT activation, which has been associated with poor clinical outcomes (26-28). 

The loss or mutation of PTEN has been demonstrated in a range of cancers (26-30); 

however, the function of PTEN in Ewing sarcoma has yet to be investigated.

Here we describe PTEN loss in Ewing sarcoma and its consequences on IGF and mTOR 

signaling, as well as on biochemical responses to small molecule inhibitors. PTEN 

deficiency augments PI3K signaling to AKT while diminishing cellular responsiveness to 
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IGF inhibition. Interestingly, PTEN loss enhances sensitivity to autophagy induced by 

mTOR inhibition. Together these data suggest how PTEN loss may influence the response 

to biological therapies in Ewing sarcoma.

Materials and Methods

Fluorescent In Situ Hybridization

The RP11-383D9 (D9) and RP11-846G17 (G17) BACs were obtained from the Children’s 

Hospital Oakland Research Institute. Bacterial cultures of both BACs were grown in LB 

with 25 μg/mL chloramphenicol and DNA extracted using Qiagen Plasmid Midi Kit with 

slight modifications (10 mL of Buffer P1, P2, and P3 and DNA was eluted in 1 mL 

increments using prewarmed Buffer QF at 65 °C). Probes were made using 1 μg of BAC 

DNA by nick translation (Abbott Laboratories, cat #32-801300) with Red-dUTP (Abbott, 

cat # 02N34-050) according to manufacturer’s protocol. A Chromosome 10 centromeric 

probe (CEP, Abbott Laboratories) was used as a control. Cell lines were trypsinized, 

washed, and then resuspended in a small volume of PBS. 10 mL of KCl at 37 °C was added 

dropwise with gentle agitation for the first 2 mL. After adding KCl, the solution was mixed 

and placed in a 37 °C water bath for 12 min after which 1 mL of fresh cold 3:1 

methanol:acetic acid (fixative) was added. Cells were collected by centrifugation (10 min, 

1000 RPM) and the pellet was resuspended in 10 mL of fresh cold fixative which was added 

dropwise with gentle agitation for the first 2 mL and incubated at room temperature for 10 

min. This process was repeated twice. BAC and CEP probes were then hybridized to each 

cell line before imaging. PTEN and CEP signals were manually counted from at least 20 

nuclei in five separate fields.

Cell culture and Antibodies

Unless otherwise indicated, EWS502, EWS894, and RD-ES cell lines were cultured in 

RPMI supplemented with 15% fetal bovine serum. A673 and MHH-ES-1 cell lines were 

cultured in RPMI supplemented with 10% fetal bovine serum. SK-ES cells were cultured in 

McCoy’s 5A supplemented with 15% fetal bovine serum. SK-N-MC cells were cultured in 

DMEM supplemented with 10% fetal bovine serum, 2 mM L-glutamine and 1X nonessential 

amino acids. EWS502 and EWS894 were kindly provided by Dr. Jonathan Fletcher 

(Brigham and Women’s Hospital, Boston) and A673 by Dr. Stephen Lessnick (Univ. of 

Utah). Other cell lines were obtained from the DSMZ (Braunschweig, Germany). HUVEC 

cells (Lifeline Technologies) were cultured in Vasculife Basal Media (Lifeline 

Technologies) supplemented with 10% FBS. CD99 (clone 12E7, Ready-to-use, PA0559, 

Leica Microsystems) and PTEN antibodies (clone 138G6, 9559S, Cell Signaling 

Technology) were used for IHC and IF. AKT (#4691), pAKT T308 (#2965), pAKT S473 

(#4060) and LC3B (#3868), cleaved PARP (#5625) were used for immunoblotting (Cell 

Signaling Technology).

Cell Proliferation, Apoptosis, Soft agar, and Autophagy

pLL5.0-PTEN (which expresses PTEN), pLL5.0-shPTEN (which expresses an shRNA 

directed at PTEN 5’-GTATAGAGCGTGCAGATAG-3’) and pLL5.0-shNS (which 

expresses a non-specific shRNA as a control) were kindly provided by Dr. James Bear 
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(UNC-Chapel Hill). Lentivirus was produced as previously described (31). EWS502 cells 

were transduced with either pLL5.0-PTEN or vector control lentivirus in the presence of 

polybrene (6 μg/mL) for 3 hours, after which media was changed and the cells split for 

proliferation, soft agar assays. Cells were stained with trypan blue and counted using a 

hemocytometer to assay proliferation. For soft agar, 0.6% agar was used as the base layer 

and 0.5% agar as the top layer. The plates were counted manually using ImageJ (NIH). 

Apoptosis was assessed using the Annexin V-Cy3 Apoptosis Detection Kit (Sigma-Aldrich) 

according to the manufacturer’s protocol. Flow cytometry was performed using the CyAn 

ADP (Beckman-Coulter). For assessment of autophagy, three days after lentiviral 

transduction A673 and EWS502 cells were split 1:3 and treated with 20 μM chloroquine for 

3 hours or chloroquine followed by 10 ng/mL temsirolimus (LC Laboratories) for 20 hrs. 

Cells were lysed in CHAPS buffer and extracts were separated by SDS-PAGE.

IGF-1 inhibition

Cells were treated with NVP-AEW541 (Cayman Chemical) and OSI-906 (ChemieTek) at 

the indicated concentrations. Prior to treatment with IGF-1, cells were kept in serum-free 

media for two hours in combination with the IGF-1 inhibitor. Cells were then treated with 

IGF-1 (Cell Signaling Technologies) for 15 min and lysed in RIPA buffer (25 mM Tris-HCl 

pH 7.6, 150 mM NaCl, 1% NP-40, 0.1% SDS) supplemented with 200 mM NaVO4 and 50 

mM NaF. Cell extracts were separated by SDS-PAGE and blotted with anti-phospho AKT 

and imaged (LiCor). For assessment of cell viability, EWS502 cells were transduced with 

lentiviral pLL5.0-PTEN or pLL5.0 as a vector control. 24 hours post infection the cells were 

treated with NVP-AEW541 in complete media. Viability was assayed 72 hours following 

NVP-AEW541 treatment using WST-1 (Roche).

Tissue microarray (TMA) and Cell Line Array (CLA) construction

Pellets from the Ewing sarcoma cell lines were fixed in 10% buffered formalin (SF98-4, 

Fisher Scientific) for 16-24 hours, washed twice in 70% ethanol, clotted in 2% low-melting 

agarose (Fisher), and then embedded in paraffin wax. Blocks were sectioned and stained 

with hematoxylin and eosin (H&E, Hematoxylin 7211, Eosin 7111, Richard-Allan). Three 1 

mm cores were removed and embedded into recipient CLA block. For TMA construction, 

Ewing sarcoma cases (n = 25) and controls (breast carcinoma, and PTEN-deleted sarcoma) 

were selected from The University of North Carolina Surgical Pathology and St. Jude 

Children’s Research Hospital archives under an IRB-approved protocol. Hematoxylin and 

eosin (H&E) stained slides were re-reviewed and representative areas of tumor were marked 

for coring. TMA blocks, containing triplicate 0.6 mm cores per case were constructed. TMA 

and CLA blocks were cut into 4 and 5 micron sections respectively and placed on positively 

charged glass slides.

Immunohistochemistry (IHC) and Immunofluorescence (IF)

TMA and CLA slides were stained with CD99 and PTEN antibodies (Bond fully-automated 

slide staining system, Leica Microsystems). Slides were deparaffinized (Bond, AR9222) and 

hydrated in wash solution (Bond, AR9590). Epitope retrieval (pH 9.0, AR9640, Bond) was 

performed followed by a peroxide blocking step (Bond DS9800). CD99 and PTEN (1:400) 

antibodies were incubated for 15 and 30 minutes, respectively then secondary antibody was 
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applied (polymer, Bond DS9800). Chromogenic detection with 3,3’-diaminobenzidine 

(DAB) and hematoxylin was performed (Polymer Refine Detection, DS9800, Bond). 

Stained slides were dehydrated and mounted. For fluorescent detection, the TSA-Cy5 

reagent (PerkinElmer), Hoechst 33258 (Invitrogen) and ProLong Gold antifade reagent 

(Molecular Probes) were used.

Imaging and digital image analysis

IHC stained TMA sections were digitally imaged (Aperio ScanScope XT, Aperio 

Technologies). High-resolution DAPI and Cy5 IF images were obtained (Aperio ScanScope 

FL). For digital images from IHC slides, Aperio’s Cytoplasmic algorithm was used to 

determine the percentage and intensity of cells positive for PTEN or CD99. A PTEN-deleted 

tumor control was used to set the negative/low positive intensity threshold for the PTEN 

stained TMA slide. IF signal was quantified (Definiens Tissue Studio, version 3.6).

Results

A subset of Ewing Sarcomas lack PTEN

We recently reported widespread alterations in chromatin structure and histone 

modifications in Ewing sarcoma cells using high-throughput sequencing (5). Although the 

experiments performed were intended to detect nucleosome-depleted regions of chromatin, 

background signal from Formaldehyde Assisted Isolation of Regulatory Elements (FAIRE-

seq) typically covers the remainder of the genome mappable by short sequencing read and 

thus offers a genome-wide sampling of DNA content. Unexpectedly, we observed an 

approximately 1 Mb region on chromosome 10 that demonstrated a nearly complete loss of 

FAIRE-seq signal, which we hypothesized to indicate homozygous deletion (Fig. 1A). The 

potential deletion encompassed several genes including the terminal exons of PTEN (Fig. 

1A).

Since deletion of PTEN had yet to be detected in Ewing sarcoma using high throughput 

sequencing approaches, we verified this deletion by fluorescence in situ hybridization 

(FISH) using two probes that overlap the PTEN locus, as well as a control centromeric 

probe. One probe (G17) is fully contained within the deleted region whereas half of the 

second probe (D9) was predicted to hybridize outside the deletion (Fig. 1A). Probes were 

hybridized to seven Ewing sarcoma cell lines (EWS502, EWS894, A673, MHH-ES-1, SK-

ES, RD-ES-1, SK-N-MC) and one control cell line (HUVEC). The absence of signal from 

the G17 probe in EWS502 cells confirmed a homozygous deletion at this region (Fig. 1B). 

Signal from the D9 probe was detected which likely results from hybridization to the 

retained region centromeric to the deletion. Signal was observed for both probes in the other 

Ewing sarcoma and control cell lines. However, EWS894 and SK-N-MC cells exhibited 

PTEN/centromeric probe ratios not equal to one suggesting other cytogenetic aberrations 

involving the long arm or centromere of chromosome 10 (Fig. 1B, C). EWS894 had two 

copies of the PTEN locus but three copies of the centromeric probe whereas one copy of the 

PTEN locus and two copies of the centromeric probe were detected in SK-N-MC. The 

PTEN/centromeric probe ratio was equivalent for the remaining cell lines; MHH-ES-1 and 

RD-ES exhibited triploidy of chromosome 10 (Sup. Fig. 1). Consistent with PTEN 

Patel et al. Page 5

Mol Cancer Res. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



chromosomal loss, PTEN protein was absent in EWS502 whereas other Ewing sarcoma cell 

lines showed variable levels (Fig. 1D).

In order to address whether PTEN was similarly lost in primary Ewing sarcoma tumor, we 

generated a tissue microarray consisting of 25 tumors diagnosed as Ewing Sarcoma during 

clinical evaluation. The samples were re-reviewed prior to microarray generation, and 

tumor-specific regions were selected for core preparation. Each tumor was represented in 

triplicate at random positions on the array. Microarray sections were hybridized to both 

FISH probes. For the 20 tumors from which FISH signal was interpretable, homozygous loss 

was not observed however copy number varied across tumors (Sup. Fig 2). Since PTEN 

expression can be affected by mechanisms other than deletion, we analyzed PTEN protein 

levels by immunofluorescence (IF) and immunohistochemistry (IHC). A Ewing sarcoma cell 

line array was generated to validate antibody-mediated detection of PTEN. PTEN detection 

by IHC and IF on the cell line array quantitatively matched detection by Western blotting (r2 

= 0.74, Sup. Fig 3). Because of the diverse age of the samples that contributed to the primary 

tumor array and the evolving criteria for Ewing sarcoma diagnosis, we performed IHC and 

IF for CD99 as confirmation of diagnosis and as a quality control. IHC and IF for CD99 as 

well as PTEN were highly concordant (Sup. Fig 4). After eliminating CD99 negative tumors 

and those with poor staining 15 tumors remained. A wide range of PTEN expression was 

detected by IF among the Ewing sarcoma samples. Three tumors demonstrated significantly 

reduced signal when compared to a PTEN-expressing control breast carcinoma sample and a 

PTEN-deficient undifferentiated sarcoma (Fig. 2A). Histological examination suggested that 

non-tumor cells confounded accurate PTEN quantification. We attempted IF for CD99 to 

specifically identify tumor cells, but due to technical constraints co-staining of PTEN and 

CD99 was not possible. However, using CD99 IHC in adjacent sections, we confirmed the 

IF results. We observed that for one additional tumor (tumor 2, Fig. 2A and B) 55% of the 

cells did not demonstrate PTEN signal (Sup. Fig. 5). Remaining PTEN expression in this 

sample may be related to CD99-negative non-tumor cells or tumor heterogeneity (Fig. 2B). 

These data suggest that PTEN expression is reduced in approximately 25% (4 of 15) of 

Ewing sarcomas, and that the loss of PTEN is primarily through mechanisms other than 

large genomic losses. This observation is consistent with other tumors in which PTEN 

expression is lost due to gene silencing or focal deletions (32-35).

PTEN loss in Ewing sarcoma augments AKT signaling

To determine the effect of PTEN loss on AKT signaling across Ewing sarcoma cell lines we 

examined phosphorylation at S473 and T308. Phosphorylation of these sites is indicative of 

AKT activation (23, 24). Among the cell lines tested, EWS502 had the highest level of 

pAKT (Fig. 3A). Low levels of S473 phosphorylation was also observed in EWS894, SK-

ES, and RD-ES-1 cells. T308 phosphorylation was limited to EWS502. PDK1-associated 

phosphorylation of T308 is associated with full AKT activation (36, 37) and was only 

observed in the absence of PTEN suggesting that AKT activation is augmented by PTEN 

loss. We then ectopically expressed PTEN in EWS502 cells to test the association between 

PTEN levels and activated AKT. Increasing PTEN was associated with a progressive 

decrease in pAKT at S473 and T308 (Fig. 3B) suggesting that AKT activation in EWS502 is 

due in part to PTEN deficiency. To test whether PTEN loss altered IGF-1 sensitivity, we 
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examined dose-dependent stimulation by IGF-1 under serum-free conditions. AKT 

demonstrated baseline phosphorylation in all Ewing sarcoma cell lines. IGF-1 stimulation 

resulted in further AKT activation. However, there was no difference in IGF-1 IC50 (Sup. 

Fig. 6). These data indicate that PTEN levels influence AKT activation but do not result in 

enhanced sensitivity to IGF-1.

The cellular effects of PTEN loss in Ewing sarcoma were examined by testing the effect of 

PTEN on cellular proliferation and anchorage-independent growth. PTEN was transduced 

into EWS502 cells and expression was confirmed by immunoblotting. PTEN expression 

resulted in significantly decreased cellular proliferation (Fig. 3C). To address whether the 

reduction in cell proliferation following PTEN expression could be attributed to increased 

apoptosis, we assayed annexin V reactivity by flow cytometry and observed a significant 

increase relative to control cells (Fig. 3D). We also observed a similar increase in cleaved 

PARP (Sup. Fig. 7). Anchorage-independent growth as assayed by colony formation in soft 

agar was also greatly diminished (Fig. 3E). Taken together, these data demonstrate that 

PTEN loss enhances cellular properties associated with transformation in Ewing sarcoma 

cells.

PTEN loss decreases sensitivity to IGF-1 inhibition

Since clinical trials of IGF-1-targeted inhibitors have demonstrated robust but limited patient 

responses, we asked whether PTEN loss might mitigate the effect of these compounds in 

Ewing sarcoma cells. Ewing sarcoma cells were treated with two IGF-1R inhibitors, NVP-

AEW541 (38) and OSI-906 (39). NVP-AEW541 has been tested for Ewing sarcoma 

whereas OSI-906 is an investigational agent for a variety of cancers (15, 16, 39-42). Cells 

cultured in serum-free media were pretreated with these inhibitors prior to stimulation by 

IGF-1. PTEN loss was associated with increased IC50 to the IGF-1 inhibitors as measured 

by AKT activation (Fig. 4A). This differential sensitivity was detectable by phosphorylation 

at both S473 and T308. Interestingly, intermediate sensitivity to these inhibitors was 

observed for EWS894 and SK-ES, both of which demonstrated lower PTEN levels and 

detectable pAKT-S473.

We then examined the effect of PTEN expression on IGF-1R inhibition focusing on NVP-

AEW541 due to its selectivity for IGF-1R (38). Transduced PTEN resulted in enhanced 

sensitivity for NVP-AEW541 with an IC50 approximating the other PTEN-expressing 

Ewing sarcoma cells (Fig. 4B). The enhanced sensitivity for NVP-AEW541 was associated 

with increased cellular toxicity (Fig. 4C). These data suggest that PTEN loss in Ewing 

sarcoma diminishes the efficacy of IGF-1R inhibitors on PI3K signaling as well as viability.

PTEN loss enhances response to temsirolimus

AKT signaling acts on the mTOR pathway to influence multiple cellular processes including 

autophagy (43, 44). In light of the emerging role of mTOR inhibition in Ewing sarcoma 

treatment, we examined the relationship between PTEN loss and autophagic response to the 

mTOR inhibitor, temsirolimus. Ewing sarcoma cells were treated with temsirolimus and 

autophagy was assayed by quantification of LC3BII, a protein localized to autophagosome 

membranes that is generated during autophagy (45). The assay was performed in the 
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presence of chloroquine to inhibit lysosomal processing and thus enable assessment of 

autophagy without ongoing degradation. PTEN-expressing Ewing sarcoma cells (A673) 

demonstrated minimal LC3BII induction in response to chloroquine or to chloroquine and 

temsirolimus (Fig. 5A). In contrast, EWS502 cells demonstrated a modest induction of 

LC3BII in response to chloroquine, but this response was significantly increased by 

temsirolimus (Fig. 5B). Since EWS502 but not A673 cells demonstrated induction of 

temsirolimus-induced autophagy, we examined the effect of modulating PTEN. Silencing 

PTEN in A673 cells augmented the autophagic response to temsirolimus whereas exogenous 

PTEN expression in EWS502 eliminated the effect of temsirolimus (but not chloroquine) 

(Fig. 5A, B). We then examined the effect of inhibiting autophagy with chloroquine on 

cellular viability. Interestingly, treatment with chloroquine attenuated the toxic effects of 

temsirolimus in the absence of PTEN but this difference was lost when PTEN was 

expressed. (Sup. Fig. 8). Together these experiments demonstrate that PTEN expression in 

Ewing sarcoma cells influences autophagic response to temsirolimus with PTEN loss 

associated with increased responsiveness to mTOR inhibition. Further, the induction of 

autophagy by temsirolimus is associated with decreased viability, suggesting that autophagy 

partially mediates the effects of temsirolimus.

Discussion

The unexpected identification of PTEN deletion in a Ewing Sarcoma cell line led us to 

explore the status of PTEN in primary tumors. Although we were unable to detect a similar 

deletion in other cell lines or a set of primary tumors using FISH, quantitative assessment of 

PTEN expression by IHC and IF suggested that approximately 25% of Ewing sarcoma 

tumors are PTEN deficient. Small deletions and other mutations undetectable by FISH, in 

addition to gene silencing, remain alterative mechanisms that result in PTEN loss in Ewing 

sarcoma. However, our observation of PTEN loss is consistent with a recent study that used 

high resolution SNP arrays to examine copy number variation in Ewing sarcoma and 

observed PTEN deletion in 14% of the tumors (46).

We found that PTEN deficiency leads to enhanced AKT activation associated with 

decreased apoptosis, increased proliferation, and anchorage-independent growth. Enhanced 

properties associated with cellular transformation in Ewing sarcoma could result in a more 

aggressive tumor phenotype. Intriguingly, ETS deregulation may cooperate with PTEN loss 

to accelerate tumorigenesis (47). Several lines of evidence indicate that mTOR contributes 

to PTEN-dependent negative feedback regulation of AKT (reviewed in (48) (49)). The loss 

of PTEN in Ewing sarcoma may be one mechanism mediating hyperactivation of AKT even 

in the absence of growth factors such as IGF-1. In addition to potentially contributing to a 

more transformed phenotype, hyperactivation of AKT may decrease sensitivity of Ewing 

sarcoma cells to chemotherapy (50, 51).

We have demonstrated that loss of PTEN decreases sensitivity to IGF-1R inhibition, as 

measured by AKT phosphorylation. Of the limited number of available cell lines tested, 

there were varying degrees of response to IGF-1R inhibition. An intermediate effect was 

seen in two cell lines with reduced PTEN expression and increased AKT phosphorylation. 
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These findings are consistent with a prior study demonstrating that PTEN silencing in 

cultured glioblastoma decreased response to NVP-AEW541 (52).

PTEN loss led to increased sensitivity to temsirolimus treatment as marked by the activation 

of autophagy. Autophagy is a metabolic recycling process in which cellular components are 

broken down in times of stress to maintain metabolic homeostasis. The role of autophagy in 

cancer is complex. Our results suggest that autophagy is required to mediate the cell 

viability effects of mTOR inhibition by temsirolimus. These data are in agreement with 

studies indicating that induction of excessive autophagy can lead to cell death (53, 54). 

mTOR inhibitors may constitute a promising therapeutic class for cancers lacking functional 

PTEN by inducing autophagy-mediated apoptosis.

PTEN deficiency renders cells less sensitive to IGF-1R inhibition but increases autophagic 

response to mTOR inhibition. The differential response to AKT/mTOR pathway 

manipulation has therapeutic implications. The promise of personalized therapy for cancer 

depends on the identification of genetic alterations in specific tumors. The limited efficacy 

of IGF-1R inhibition offers an opportunity for the application of relevant biomarkers. Our 

results indicate that loss of PTEN expression may diminish the therapeutic response of 

Ewing sarcoma to IGF-1R inhibitors. However, our study also suggests a reciprocal 

interaction between PI3K/AKT signaling and autophagy. Whereas PTEN loss decreased 

sensitivity to IGF-1R inhibition, it enhanced sensitivity to temsirolimus. These data suggest 

that patients who are unresponsive to IGF-1R inhibition may benefit from mTOR 

inactivation. The application of PTEN expression as a biomarker to future clinical trial 

would be needed to directly assess this possibility. Due to interactions between the IGF-1R 

and mTOR pathways, combination of IGF-1R- and mTOR-directed therapies are being 

evaluated in preclinical and early phase clinical trials with evidence of efficacy. (55-58). The 

ability to identify and apply relevant prognostic biomarkers during the selection of 

biologically active therapies may greatly increase the possibility of therapeutic benefit.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Implications

PTEN status in Ewing sarcoma affects cellular responses to IGF-1 and mTOR-directed 

therapy; thus, justifying its consideration as a biomarker in future clinical trials.
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Figure 1. Identification of PTEN deletion in Ewing Sarcoma
A, FAIRE-seq derived high throughput sequencing tag density around the PTEN locus in 

EWS502. Red bars indicate the regions of hybridization for the FISH probes. Only genes 

located within the deletion are shown. B, PTEN FISH for representative Ewing sarcoma cell 

lines and a control (HUVEC). Chromosome 10 centromeric probe (green) and PTEN BAC 

probes (red) are shown. C, Observed ratio of PTEN probe to centromeric probe (CEP) 

signal. Error bars indicate standard deviation of PTEN/CEP probe ratio from five unique 

fields counting a minimum of 20 cells per field (with the exception of SK-ES in which 20 

nuclei were analyzed). D, Immunoblot of PTEN in Ewing sarcoma cells. Extracts of 

EWS502, EWS894, A673, MHH-ES-1, SK-ES, RD-ES, and SK-N-MC and a control cell 

line, HUVEC were blotted with anti-PTEN antibody. Tubulin was used as a loading control.
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Figure 2. Loss of PTEN expression in primary Ewing Sarcoma
A, PTEN and CD99 immunofluorescence in Ewing sarcoma. Average immunofluorescence 

(H-score) for PTEN (blue bars) and CD99 (red bars) in Ewing sarcoma and control tumors. 

Positive (+) and negative (−) PTEN control tumors are shown to the right. Error bars 

represent standard deviation of H-scores between replicate cores. Absence of error bars 

indicates single core available for analysis. B, Representative hematoxylin and eosin (H&E), 

CD99, and PTEN diaminobenzidine (DAB) staining. Immunohistochemistry for selected 

Ewing sarcoma and control tumors (indicated in A) is shown. Scale bar, 50 μm.

Patel et al. Page 16

Mol Cancer Res. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. PTEN loss enhances AKT signaling promoting transformation
A, Immunoblot for total and phospho-AKT. Ewing cell lines and HUVEC under normal 

growth conditions were immunoblotted for phospho-AKT at S473 and T308. B, PTEN 

expression abrogates phospho-AKT. EWS502 were transduced with increasing amounts of 

PTEN-expressing lentivirus. Extracts were immunoblotted for PTEN, AKT, pAKT S473, 

pAKT T308, and tubulin. Phospho- and total AKT were quantified. The ratio of pAKT/AKT 

is shown (bottom). C, PTEN expression reduces cell proliferation. EWS502 were transduced 

with PTEN on day 0 and cells were counted daily. D, PTEN expression increases apoptosis. 

Annexin V staining in EWS502 cells transduced with PTEN (black) or a control vector 

(grey) were analyzed by flow cytometry. Percentages of annexin positive cells are shown. E, 

PTEN expression reduces colony formation. EWS502 transduced with PTEN or control 

vector were plated in soft agar. Colonies were stained with MTT for visualization (left) and 

quantified (right). Colonies greater than 1 mm in size were counted. For each panel, error 

bars represent standard error between triplicates. * and ** indicate p < 0.05 and p < 0.01 

respectively (two-tailed T-test).
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Figure 4. PTEN modulates sensitivity to IGF-1R inhibitors
A, PTEN loss decreases sensitivity to IGF-1R inhibitors. Ewing Sarcoma cells were treated 

with NVP-AEW541 (left) or OSI-906 (right) at the indicated concentrations for 2 hours in 

serum-free media and then stimulated with IGF-1 (5 ng/mL final concentration) for 15 min. 

Extracts were immunoblotted for pAKT at Thr 308 (top) and S473 (bottom) and results were 

quantified. Relative inhibition was calculated by normalizing pAKT signal to mock 

treatment (zero concentration). B, PTEN expression increases sensitivity to IGF-1R 

inhibition. EWS502 transduced with PTEN (dotted grey) or a control vector (solid black) 

were exposed to NVP-AEW541 for 2 hours in serum-free media and then stimulated with 

IGF-1 (5 ng/mL final concentration) for 15 min. Relative inhibition was calculated as above. 

C, PTEN expression increases the cellular toxicity associated with NVP-AEW541 treatment. 

EWS502 cells were transduced as in B and treated with NVP-AEW541 for 72 hours at 

indicated concentrations and assayed for viability. For each panel, error bars represent 

standard error between replicates. * and ** indicate p < 0.05 and p < 0.01 respectively (two-

tailed T-test).
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Figure 5. PTEN loss potentiates temsirolimus-induced autophagy
A, PTEN silencing enhances induction of autophagy in response to temsirolimus. A673 cells 

transduced with a PTEN-shRNA (shPTEN) or nonspecific control (shNS) were treated with 

chloroquine (CQ) alone or chloroquine and temsirolimus (10 ng/mL) for 20 hours (CQ/TM). 

Chloroquine was added 3 hours prior to the initiation of temsirolimus treatment. Cell 

extracts were immunoblotted for LC3B, PTEN, and tubulin (top). LC3BII bands were 

quantified and normalized to tubulin (bottom). B, PTEN expression abrogates induction of 

autophagy in response to temsirolimus treatment. EWS502 cells transduced with exogenous 

PTEN or a control vector (GFP) were treated with chloroquine (CQ) alone or chloroquine 

and temsirolimus (10 ng/mL) (CQ/TM) as described above. Cell extracts were 

immunoblotted and quantified as above. * and ** indicate p < 0.05 and p < 0.01 respectively 

by two-tailed T-test.
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