9 research outputs found

    Prognostic markers of ferroptosis-related long non-coding RNA in lung adenocarcinomas

    Get PDF
    Ferroptosis is a recently established type of iron-dependent programmed cell death. Growing studies have focused on the function of ferroptosis in cancers, including lung adenocarcinoma (LUAD). However, the factors involved in the regulation of ferroptosis-related genes are not fully understood. In this study, we collected data from lung adenocarcinoma datasets of the Cancer Genome Atlas (TCGA-LUAD). The expression profiles of 60 ferroptosis-related genes were screened, and two differentially expressed ferroptosis subtypes were identified. We found the two ferroptosis subtypes can predict clinical outcomes and therapeutic responses in LUAD patients. Furthermore, key long non-coding RNAs (lncRNAs) were screened by single factor Cox and least absolute shrinkage and selection operator (LASSO) based on which co-expressed with the 60 ferroptosis-related genes. We then established a risk score model which included 13 LUAD ferroptosis-related lncRNAs with a multi-factor Cox regression. The risk score model showed a good performance in evaluating the outcome of LUAD. What’s more, we divided TCGA-LUAD tumor samples into two groups with high- and low-risk scores and further explored the differences in clinical characteristics, tumor mutation burden, and tumor immune cell infiltration among different LUAD tumor risk score groups and evaluate the predictive ability of risk score for immunotherapy benefit. Our findings provide good support for immunotherapy in LUAD in the future

    Influence of boundary conditions on non-equilibrium heat transport under ultrafast laser action based on the lattice Boltzmann method

    No full text
    Based on the lattice Boltzmann method, this paper simulated the non-equilibrium heat transfer process in nano-silicon thin film under ultrafast laser irradiation. The influence of boundary conditions on heat transport was investigated. Results show that under rebound and diffuse boundary conditions, the energy distribution within the film is non-uniform due to interface effects. However, the specular boundary condition is equivalent to eliminating the interface, resulting in a smooth energy distribution. Under convective boundary conditions, the thermal wave phenomenon disappears owing to the open interface. When the energy tends to be stable, the energy density under convective boundary conditions is reduced to 50% of that under adiabatic boundary conditions. As the film size decreases, the differences between boundary conditions become more significant. Particularly when the film size is smaller than the phonon mean free path, the influence of boundary conditions cannot be neglected. Therefore, boundary conditions and size effects are important for the design of nanodevices. Furthermore, compared with the results obtained by the Cattaneo-Vernotte model, it is found that at smaller Knudsen numbers, the Cattaneo-Vernotte model has a better match with the lattice Boltzmann method

    Study on the Modified Ventilation Network on the Ventilation Effect and Ozone Migration Characteristics in Grain Pile

    No full text
    Grain is an important material for human survival. However, the expanding world population is contributing to a growing grain shortage. In order to reduce the loss of grain due to pests and mold during storage, mechanical ventilation as the main method of ventilation has crucial research significance. This article proposed and analyzed the ventilation effect and the migration characteristics of ozone in the grain pile under the modified ventilation network (MVN) and compared it with the original ventilation network (OVN). The study found that the temperature, moisture, and ozone concentration in the grain pile of the two ventilation networks are not evenly distributed in the vertical direction, showing a layered pattern. That is, with an increase in grain stack height, the temperature and moisture content of the grain stack are higher, and the ozone concentration is lower. Moreover, in the pre-ventilation period, the average temperature decline rate of the MVN was 1.25 °C/d, which was better than that of the OVN (0.84 °C/d), and the maximum temperature difference between the MVN and the OVN was 0.89 °C. The vertical ducts added to the MVN improved the ventilation effect, maintaining high ozone concentrations within the grain pile. Notably, on the sixth day of fumigation, the average ozone concentration of the MVN exceeded that of the OVN. The MVN can solve the shortcomings of the OVN, where air intake and fumigation gas rise slowly in the vertical direction. These findings hold substantial significance for optimizing ventilation network structures, devising effective fumigation strategies, and enhancing the insecticidal effects of grain storage
    corecore