27 research outputs found

    Conservation Prioritization Problems and their Shadow Prices

    Get PDF
    Systematic conservation planning is an essential part of biodiversity preservation

    Ecologically and biophysically optimal allocation of expanded soy production in Bavaria, Germany

    Get PDF
    A debate about cultivation and trading of soy has emerged among scientists, policymakers, and the public in recent years. Export-orientated soy production in regions of South America is associated with large-scale ecosystem destruction. Since soy is an important source of animal fodder, policymakers are developing schemes to support and enhance sustainable domestic soy cultivation, especially in the EU. Expanded soy cultivation should ideally provide high yields and at the same time promote environmental benefits. For this purpose, we applied a multi-objective optimization algorithm that selects areas with maximum soy suitability, minimum erosion risk, need for low fertilizer input due to water quality issues, and need for diversification of monotonous crop rotations. We use the state of Bavaria in Germany as a case study, modeling full self-sufficiency of soy. The results of the optimization indicate synergies between plantation suitability with need for low fertilization input and crop variation, which implies that the environmental benefit of nitrogen fixation and rotation diversification from soy plants can easily be reconciled with food productivity. However, slight trade-offs occur between erosion risk and the three other objectives, i.e., locations with better soy production might be more prone toward erosion risk. As a potential consequence of expanded soy cultivation in Bavaria, we identified winter wheat, grain maize, potatoes, and sugar beet as those crops that have the highest share of displaced cultivation area. To reduce such land use conflicts and ensure self-sufficiency in relevant crops, we recommend to limit the use of soy as animal feed. Nevertheless, we propose to explicitly incorporate the local need for the environmental benefits of soy cultivation in the planning for soy expansion. In doing so, domestic soy can turn into a real sustainable alternative to imported plant protein

    European clinical guidelines for Tourette syndrome and other tic disorders. Part II: pharmacological treatment

    Get PDF
    To develop a European guideline on pharmacologic treatment of Tourette syndrome (TS) the available literature was thoroughly screened and extensively discussed by a working group of the European Society for the Study of Tourette syndrome (ESSTS). Although there are many more studies on pharmacotherapy of TS than on behavioral treatment options, only a limited number of studies meets rigorous quality criteria. Therefore, we have devised a two-stage approach. First, we present the highest level of evidence by reporting the findings of existing Cochrane reviews in this field. Subsequently, we provide the first comprehensive overview of all reports on pharmacological treatment options for TS through a MEDLINE, PubMed, and EMBASE search for all studies that document the effect of pharmacological treatment of TS and other tic disorders between 1970 and November 2010. We present a summary of the current consensus on pharmacological treatment options for TS in Europe to guide the clinician in daily practice. This summary is, however, rather a status quo of a clinically helpful but merely low evidence guideline, mainly driven by expert experience and opinion, since rigorous experimental studies are scarce

    Conservation Prioritization Problems and their Shadow Prices

    Get PDF
    Systematic conservation planning is an essential part of biodiversity preservation

    Conservation Prioritization Problems and their Shadow Prices

    No full text
    Systematic conservation planning is an essential part of biodiversity preservation

    On which targets should we compromise in conservation prioritization problems?

    No full text
    1. Systematic conservation planning is an essential part of biodiversity preservation. In the context of conservation prioritization problems, the total cost of the entire reserve system is highly dependent on how big we set targets (e.g. 10% or 30%) for conservation features (e.g. species or habitats). Thus, it is of interest to conservation planners how targets could be adjusted in a reasonable way, in order to decrease total cost. The aim of this paper is to rank features based on their influence on total cost

    Ecologically and biophysically optimal allocation of expanded soy production in Bavaria, Germany

    Get PDF
    A debate about cultivation and trading of soy has emerged among scientists, policymakers, and the public in recent years. Export-orientated soy production in regions of South America is associated with large-scale ecosystem destruction. Since soy is an important source of animal fodder, policymakers are developing schemes to support and enhance sustainable domestic soy cultivation, especially in the EU. Expanded soy cultivation should ideally provide high yields and at the same time promote environmental benefits. For this purpose, we applied a multi-objective optimization algorithm that selects areas with maximum soy suitability, minimum erosion risk, need for low fertilizer input due to water quality issues, and need for diversification of monotonous crop rotations. We use the state of Bavaria in Germany as a case study, modeling full self-sufficiency of soy. The results of the optimization indicate synergies between plantation suitability with need for low fertilization input and crop variation, which implies that the environmental benefit of nitrogen fixation and rotation diversification from soy plants can easily be reconciled with food productivity. However, slight trade-offs occur between erosion risk and the three other objectives, i.e., locations with better soy production might be more prone toward erosion risk. As a potential consequence of expanded soy cultivation in Bavaria, we identified winter wheat, grain maize, potatoes, and sugar beet as those crops that have the highest share of displaced cultivation area. To reduce such land use conflicts and ensure self-sufficiency in relevant crops, we recommend to limit the use of soy as animal feed. Nevertheless, we propose to explicitly incorporate the local need for the environmental benefits of soy cultivation in the planning for soy expansion. In doing so, domestic soy can turn into a real sustainable alternative to imported plant protein

    Evolutionary algorithms for species distribution modelling : a review in the context of machine learning

    No full text
    Scientists and decision-makers need tools that can assess which specific pressures lead to ecosystem deterioration, and which measures could reduce these pressures and/or limit their effects. In this context, species distribution models are tools that can be used to help asses these pressures. Evolutionary algorithms represent a collection of promising techniques, inspired by concepts observed in natural evolution, to support the development of species distribution models. They are suited to solve non-trivial tasks, such as the calibration of parameter-rich models, the reduction of model complexity by feature selection and/or the optimization of hyperparameters of other machine learning algorithms. Although widely used in other scientific domains, the full potential of evolutionary algorithms has yet to be explored for applied ecological research. In this synthesis, we study the role of evolutionary algorithms as a machine learning technique to develop the next generation of species distribution models. To do so, we review available methods for species distribution modelling and synthesize literature using evolutionary algorithms. In addition, we discuss specific advantages and weaknesses of evolutionary algorithms and present a guideline for their application. We find that evolutionary algorithms are increasingly used to solve specific and challenging problems. Their flexibility, adaptability and transferability in addition to their capacity to find adequate solutions to complex, non-linear problems are considered as main strengths, especially for species distribution models with a large degree of complexity. The need for programming and modelling skills can be considered as a drawback for novice modellers. In addition, setting values for hyperparameters is a challenge. Future ecological research should focus on exploring the potential of evolutionary algorithms that combine multiple tasks in one learning cycle. In addition, studies should focus on the use of novel machine learning schemes (e.g. automated hyperparameter optimization) to apply evolutionary algorithms, preferably in the context of open science. This way, ecologists and model developers can achieve an adaptable and flexible framework for developing tools useful for decision management
    corecore