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Abstract 1

Abstract

Systematic conservation planning is an essential part of biodiversity preser-
vation. In the context of conservation prioritization problems, the total cost
of the entire reserve system is highly dependent on how big we set targets
(e.g. 10% or 30%) for conservation features (e.g. species or habitats). Thus,
it is of interest for conservation planners, how targets could be adjusted in a
reasonable way in order to decrease total cost. The aim is to give a feature
ranking based on their influence on the latter. Focusing on the minimum set
coverage problem – an integer linear optimization problem (ILP) – this thesis
presents a method to rank features according to their influence on total cost.
Since the computation time is often too high to solve the ILP, its optimal
solutions are approximated by the results of a linear optimization problem
(LP). The shadow prices of the LP are used for the feature ranking which
is compared to additional rankings. These are created by methods which
used an ILP solver and the software Marxan which is based on a simulated
annealing algorithm. The results showed that for the minimum set coverage
problem shadow prices can be used to create an approximate feature rank-
ing of impact on total cost. Furthermore many planning units selected for
conservation by Marxan and the LP solver were the same. These results can
be useful to improve Marxan. Additionally, the feature ranking provides a
new supporting tool for decision makers in conservation planning.
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1 Introduction

Our planet provides a diversity of habitats for millions of different species.
Aside from their existence value, they provide very important ecosystem
services such as food production, crop pollination and flood protection. Thus,
it is important from an ecological, as well as an economic point of view, to
conserve these species and areas. Cocks and Baird stated that “conservation
reserves are areas of land intended to be retained in a relatively undisturbed
state in the hope of ensuring the long-term survival of the biotic and abiotic
entities they contain, e.g. species, communities, guilds, land units, land
systems, geological formations.” [8, p. 114]. This thesis is about the selection
of conservation reserves for conserving biodiversity.

Generally there is a variety of sites which can be chosen as future pro-
tected areas but in most cases the selection is restricted by limited resources
(e.g. a limited budget). Additionally, targets for the representation level of
the considered features (e.g. 20% of the distribution of a species or habitat,
or a minimum viable habitat area [11, 22]) must be met. Furthermore, the
spatial relationships between sites and several other aspects should be taken
into account.

The question of reserve design has been discussed by several scientists.
Soulé and Simberloff, for example, emphasize the topic of population viability
as an important criterion for designing reserve systems. They conclude that
“nature reserves should be as large as possible, and there should be many of
them. [...] For many species, it is likely that there must be vast areas, while
for others, smaller sites may suffice as long as they are stringently protected
and, in most instances, managed. If there is a target species, then the key
criterion is habitat suitability.” [23, p. 32]. In this context, Burgman et
al. suggest a ranking of sites according to a habitat suitability index which
could be used to calculate the total value of a habitat patch for species con-
servation [6]. The problem of the early work done in conservation planning
is that it often lacks the consideration of social and economic constraints.
However, later research realized this deficit and systematic approaches rose
that suggested to build reserve networks “as efficiently as possible within a
constrained area”.[20, p. 291]

According to Cocks and Baird, the problem of selecting various sites
in order to create a reserve system can be formulated as a mathematical
programming problem. To this end, they provide a set of reserve guidelines
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such as: “ensure that only low cost sites are included in the suggested reserve
system.” [8, p. 119]

There are many ways of formulating conservation prioritization problems
depending on the decision makers’ objectives, restrictions and the consider-
ations they would like to consider. A mathematical classification along with
some examples will be provided in Chapter 2.

In this thesis, we will focus on the static versions of the so-called minimum
set coverage problem, which is an integer linear programming problem (ILP),
and its relaxation, the land allocation problem, a linear programming problem
(LP). The definition of both optimization problems based on Moilanen et
al. [18] will be given in Chapter 2. These problems represent the most
basic approaches to formulating a conservation prioritization problem. Their
objective is to minimize cost on the condition that the target for each feature
is met. Given that targets influence the cost of the entire reserve system, it
may be interesting for decision makers to know which feature requires what
amount of the resources in order to adjust the targets in a reasonable way
and thereby achieve lower total cost. Thus, the question emerges how we can
create an appropriate feature ranking? Furthermore, we seek to understand,
how targets can be changed (e.g. a slight increase in the minimum viable
habitat area of a species) either without having any impact on total cost or
by changing them drastically.

These are typical questions in the area of sensitivity analysis the answers
to which require an optimal solution to the respective optimization problem
to be found first. For this purpose, we will present different algorithms in
Chapter 3: a branch-and-bound method for the resolution of relatively small
ILPs and the dual bounded simplex algorithm for LPs. We will also introduce
a simulated annealing algorithm, which is used by the conservation software
Marxan and provides a heuristic approach for solving large ILPs.

Subsequently, methods for the sensitivity analysis of perturbations in the
optimization problem’s right-hand side (RHS) will be given in Chapter 4.
First, we cover linear optimization problems and introduce the so-called
shadow prices, which under certain conditions can be used in order to de-
scribe changes in the objective function value due to perturbations in the
RHS (i.e. the targets). For bigger perturbations, the use of the already cal-
culated shadow prices might not be applicable anymore. In this case, linear
parametric optimization techniques can be applied, which will be presented
in section 4.1.2. We will also address the topic of degeneracy, which oc-
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curs when an optimization problem is overdetermined, i.e. there are more
constraints than variables. An optimal degenerate solution implicates that
instead of a unique shadow price, there might exist a whole range of shadow
prices for a single optimal solution but only one of these can actually be used
for our purposes. In general, the results of sensitivity analysis for LPs can-
not be applied to ILPs. Therefore, the second part of the chapter will give
an overview of approaches that can be used for integer linear optimization
problems.

After we cover the theoretical background, we will develop a method that
creates a feature ranking according to their influence on total cost of the
reserve system (Chapter 5). We will then apply it to three real-world mini-
mum set coverage problems and discuss the results in Chapter 6. Finally, the
thesis will conclude with a brief outlook and suggestions for further research.
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2 Conservation Prioritization Problems

In the 1970s, conservation biologists established the concept of refuge de-
sign in an attempt to explain species occurences in island-like habitats. The
question emerged whether the creation of several small reserves or only a
single large one would be the preferred way of preserving species richness.
Until today, the concepts of conservation prioritization have been continu-
ously developed in an attempt to describe the complexity of our world as
realistically as possible. Formulating it in Hanski’s words: “The goal is no
longer a calculation that would just aim at selecting the next nature reserve
to protect [...] The goal is [...] to apply statistical modelling techniques and
numerical methods with the help of decision making theory to inform the
rational allocation of resources that are available for conservation.” [18, p.
xvii]

In the introduction, we already used the terms ’feature’, ’target’ and
’cost’, which are specified in the Marxan user’s manual [11] as follows:

Features can be, for example, species, habitats or streams. A conserva-
tion prioritization problem can take a combination of different kind of fea-
tures into account. Note that different features may have different units (e.g.
hectares, number of occurrences, nests or length).

Targets define the amount, extent, number or degree of features that must
be included in the solution. Each feature can have a different target, e.g. 20%
of the overall representation of feature 1, 30% of feature 2. For conservation
planners, it might be preferable to set high targets for rare and low targets
for common conservation features. However, they must have the same units
as given in the respective planning units.

Cost of a planning unit can be “any relative social, economic or ecologi-
cal measure” [11, p. 46]. Monetary values, for example, can be obtained by
using cost for purchasing land or “the opportunity cost of alternate land and
sea uses that are incompatible with conservation” [11, p. 45 f.].

In the following, the mathematical classification of conservation prioriti-
zation problems is based on the corresponding chapter by Moilanen, Possing-
ham and Polasky in [18]. According to the authors, conservation prioritiza-
tion problems can be formulated as classical dynamic or static optimization
problems consisting of one or multiple objective functions, control variables,
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constraints, state variables and state equations.

Symbol Explanation

i ∈ I = {1, ..., n} Index for sites
j ∈ J = {1, ...,m} Index for features
s ∈ {0, 1} Index for time
xis Dynamic indicator variable telling whether site i was

chosen for evaluation at time s, xs = (x1s, ..., xns)
T

xi Static indicator variable telling whether site i was cho-
sen for evaluation, x = (x1, ..., xn)T

ai0 Action taken in site i at time 0, a0 = (a10, ..., an0)T

ai Action taken in site i, a = (a1, ..., an)T

ci Cost of site i, c = (c1, ..., cn)T

rji Occurrence level of feature j in site i
tj ∈ R+

0 Target representation level for feature j
B Total conservation budget

Table 1: Notation.

They present three different approaches to the formulation of objective
function and appropriate constraints: The first, the minimum set coverage
problem, see (2.2) below, tries to achieve all conservation targets at minimum
cost whereas the second, the maximal coverage problem, defined in (2.12),
follows the objective to maximize the number of conservation targets having
a restriction on the budget available. More generally, the objective could
also be to maximize the conservation value that can be obtained with limited
resources. This would be the third approach, called the utility maximization
problem, introduced in (2.16).

In this thesis, we will discuss only static conservation prioritization prob-
lems. However, in order to guarantee a clear distinction between state and
control variables, we will first introduce the minimum set coverage problem
as a one-step dynamic problem and consequently, give then an alternative
static definition, which is going to be the basis for the following chapters. A
summary of the notation used in this chapter can be found in Table 1.

Definition 2.1: (One-step dynamic minimum set coverage problem)
Let i ∈ I = {1, . . . , n} be the set of planning units and xs the vector of
indicator variables xis stating whether site i has been selected for preservation
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in time step s ∈ {0, 1} or not, i.e.

xis =

{
1, site i selected

0, else
∀ i, s.

Furthermore, let rji be the representation level of feature j ∈ J = {1, . . . ,m}
in planning unit i and let tj ∈ R+

0 be the target for the respective feature.
The vector a0 contains the actions ai0 taken in planning unit i at time step
0 and vector c, the cost ci of planning unit i. For a fixed inital vector x0, we
define the one-step dynamic minimum set coverage problem as

min
a0,x1∈{0,1}n

∑
i∈I

ciai0

s.t.
∑
i∈I

rjixi1 ≥ tj ∀ j ∈ J

xi1 = 1− (1− xi0)(1− ai0) ∀ i ∈ I

ai0, xi1 ∈ {0, 1} ∀ i ∈ I.

(2.1)

Here, the objective is to minimize total cost of the reserve system provided
that all targets are met. The xis are the state variables describing the math-
ematical state of the reserve system, i.e. which sites are already conserved
at time step 0 and which will be reserved at time step 1. The ai0 form the
control variables. Those are the variables we can vary in order to find an
optimal solution to the problem. In this case, an action is whether to select
a planning unit for conservation or not, i.e.

ai0 =

{
1, select site i

0, else
∀ i. (2.2)

The state equation

xi1 = 1− (1− xi0)(1− ai0) ∀ i ∈ I

specifies the relation between state and control variables and the transition
of the structure of the reserve system from time step 0 to 1. If site i has
already been conserved or an according action has been taken in s = 0, xi1
obtains the value 1. Otherwise, it will is not considered as protected in s = 1,
i.e. xi1 = 0.

It would also be possible to include the state variables of vector x0 in the
minimization process in order to find an optimal starting vector. However,
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in the context of conservation science, it is more realistic to assume that the
initial structure of the reserve system is given and that there is no opportunity
to decide to protect a site in time step 0 or not.

We now define the static version of the minimun set coverage problem.
Note that in this formulation, there is no clear distinction between control
and state variables since both are conflated in the decision variable. On the
one hand, the decision variable describes whether a site is part of the reserve
system and on the other hand, it also states if a site is getting selected for
conservation or not.

Definition 2.2: (Static minimum set coverage problem)
Let x be the vector of indicator variables xi stating whether site i was selected
for preservation or not. We then define the static minimum set coverage
problem as

min
x∈{0,1}n

∑
i∈I

cixi

s.t.
∑
i∈I

rjixi ≥ tj ∀ j ∈ J

xi ∈ {0, 1} ∀ i ∈ I.

(2.3)

This is an integer optimization problem whose relaxation is called the land al-
location problem. But before we introduce this problem, we will first examine
the relationship of Definitions 2.1 and 2.2.

In Chapter 10.2 of [18], it is stated that the static problem can be thought
of as a one-step dynamic problem. It appears that the two problems are not
equivalent as shown in Example 2.1. However, if we assume that all sites are
initially available for protection, we can prove that (2.1) and (2.2) lead to
the same optimal solution.

Example 2.1: (Non-equivalence of the dynamic and the static problem)
Consider the one-step dynamic minimum set coverage problem (2.1) and let
x0 := (1, 0), i.e. the reserve system includes a site that is already protected
at time step 0. For the dynamic problem, let rji and tj be such that

∑
i∈I

rjixi1

{
≥ tj, x1 = 1

< tj, else
∀ j (2.4)
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and for the static problem

∑
i∈I

rjixi

{
≥ tj, x = 1

< tj, else
∀ j. (2.5)

Furthermore, we assume that costs are strictly positive, i.e. c > 0.

Using the state equation of the dynamic problem, we get

x11 = 1 and x21 = a20,

and entering these values in the objective function, we obtain

min
a0∈{0,1}2

∑
i∈I
ciai0 = min

a0{0,1}2
(c1a10 + c2x21)

(2.4)
= min

a0∈{0,1}2
(c1a10 + c2)

= c2.

(2.6)

The application of assumption (2.5) to the objective function of the static
problem gives

min
x∈{0,1}2

∑
i∈I

cixi = c1 + c2. (2.7)

Comparing the results of (2.6) and (2.7), it is apparent that the static prob-
lem’s objective function value is bigger than that of the dynamic problem.
This is due to the fact that in the static case already protected sites are not
considered as such. Therefore, if a site i is already reserved in time step 0
of the dynamic problem, i.e. xi0 = 1, and it is essential for the fulfilment of
the constraints (meeting the targets), then it will be selected by the static
problem as well. In this case, the protection of the site will cause cost in
the present, whereas in the dynamic problem, these cost would have already
been incurred in the past.

Corollary 2.1: The one-step dynamic minimum set coverage problem (2.1)
can be formulated as a static problem by assuming that no planning units
have already been selected for conservation, i.e. x0 := 0.

Proof: We first consider the dynamic problem. Using the state equation
from (2.1), we get

xi1 = 1− (1− xi0)(1− ai0)
= 1− (1− ai0)
= ai0.

(2.8)
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Now, we can reformulate the dynamic problem as

min
a0∈{0,1}n

∑
i∈I

ciai0

s.t.
∑
i∈I

rjiai0 ≥ tj ∀ j ∈ J

ai0 ∈ {0, 1} ∀ i ∈ I.

(2.9)

And with xi := ai0 for all i ∈ I, we obtain the static formulation as defined
in Definition 2.2.

The other direction of proof starts with the static problem. Since we
assume that x0 := 0, all sites are still available for conservation at time step
0. This means that the values of x depend on the actions taken in time step
0, a0, with ai0 as defined in (2.2). With the consideration of only one time
step, both variables conflate. This means that

xi = ai0 ∀i.

From (2.8), we can infer that

xi1 = xi ∀i,

and by using this, the dynamic optimization problem has the form

min
x1∈{0,1}

∑
i∈I

cixi1

s.t.
∑
i∈I

rjixi1 ≥ tj ∀ j ∈ J

xi1 = 1− (1− xi0)(1− ai0) ∀ i ∈ I

xi0 = 0, ai0, xi1 ∈ {0, 1} ∀ i ∈ I,

(2.10)

which proves the assertion.

If we relax the static minimum set coverage problem by allowing its vari-
able xi to take continuous values, we obtain the land allocation problem:
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Definition 2.3: (Land allocation problem)
The land allocation problem is a continuous optimization problem and can
be written as

min
x∈[0,1]n

∑
i∈I

cixi

s.t.
∑
i∈I

rjixi ≥ tj ∀ j ∈ J

0 ≤ xi ≤ 1 ∀ i ∈ I.

(2.11)

Since xi ∈ [0, 1] for all i, it is possible to select only fractions of sites.
Imagine the case when a site consists of more than one habitat, and species
living in this site are not homogeneously distributed, but prefer one habitat
over another. A solution to the optimization problem might be to protect
only a fraction of this site. However, in doing so, we would not be sure
whether the fraction of the site that we protect actually contains the species
or habitat we are interested in conserving. Therefore, it may be possible
that some features would actually not be protected even though they would
have been mathematically. Thus, the minimum set coverage problem may
be a more realistic approach for real-world problems, but usually it is also
more difficult to solve since it is an integer problem. Note that in the case
species and habitats being homogeneously distributed through each site, the
land allocation problem is valid for meeting targets not only theoretically,
but also in practice.

As mentioned previously, another approach is to maximize the number
of conservation targets subject to the condition that total cost should not
exceed a certain budget. The maximal coverage problem is such a problem
type and is defined below.

Definition 2.4: (Maximal coverage problem)
Let

yj(x) :=
∑
i∈I

rjixi ∀ j ∈ J

be the amount of protected individuals of feature j. Given a conservation
budget B (e.g. money, trained personnel or time), the maximal coverage
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problem can be formulated as

max
x∈[0,1]n

∑
j∈J

θ(yj(x)− tj)

s.t.
∑
i∈I

cixi ≤ B

xi ∈ [0, 1] ∀ i ∈ I,

(2.12)

with

θ(yj(x)− tj) =

{
1, yj(x) ≥ tj

0, yj(x) < tj
∀ j ∈ J.

The shifted unit step function θ takes the value 1 if the target of feature
j is met and 0 otherwise. Solving this type of problem can be done by
reformulating it into a mixed integer programming problem using an auxiliary
binary variable, which will be shown in Corollary 2.2. Another way would be
approximating the step function with a smooth function, even though this
approach would lead to an approximate instead of a direct solution.

Corollary 2.2: The maximal coverage problem can be formulated as a mixed
integer problem of the form

max
z∈{0,1}n,x∈[0,1]n

∑
j∈J

zj (2.13a)

s.t.
∑
i∈I

rjixi ≥ tjzj ∀ j ∈ J (2.13b)

∑
i∈I

rjixi ≤ tj +Mzj ∀ j ∈ J (2.13c)

∑
i∈I

cixi ≤ B

xi ∈ [0, 1] , zj ∈ {0, 1} ∀ i ∈ I, j ∈ J

with zj being an auxiliary binary variable and M � 0.
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Proof: Consider the maximal coverage problem as it has been defined in
(2.12). In order to obtain the objective function (2.13a), we define

zj := θ(yj(x)− tj) =

{
1, yj(x) ≥ tj

0, yj(x) < tj
∀ j ∈ J. (2.14)

We can also add constraints (2.13b) and (2.13c) because if zj = 1 for a j ∈ J ,
then ∑

i∈I

rjixi ≥ tj ⇔
∑
i∈I

rjixi ≥ tjzj ∀j

and ∑
i∈I

rjixi ≤ tj +Mzj

would be redundant for all j with M big enough. And if zj = 0 for a j ∈ J
then (2.13b) would be redundant since rji, xi ≥ 0 and constraint (2.13c)
would be met, given that per definition of zj, it holds that∑

i∈I

rjixi < tj ∀j.

Thus, we obtain the problem formulation as given in (2.13).

Now consider the mixed integer problem formulation (2.13). Using the
same reasoning as above, we can conclude that for∑

i∈I

rjixi > tj

zj must be 1 and for ∑
i∈I

rjixi < tj

it must take the value 0. In case∑
i∈I

rjixi = tj

we have to distinguish the two cases in which tj is equal to or greater than
0. It is obvious that if tj > 0, then zj > 0. But for tj = 0, both z = 0
and z = 1 would fulfil the inequality if it were not for the objective function
which always prefers z = 1 over z = 0. Therefore, we can conclude that for
the currently discussed case, z must be equal to 1.

Defining zj as in (2.14), we can eliminate the corresponding constraints
(2.13a) and (2.13c) from the optimization problem and obtain the same prob-
lem formulation as in (2.12).
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In the one-step dynamic formulation of the minimum set coverage prob-
lem, ais has been the action taken in planning unit i at time step s ∈ {0, 1}.
Accordingly, ai is the respective variable of the static problem which we have
addressed by the variable name xi in (2.2) - (2.12). So far, we have considered
only one action that can be taken in a planning unit (e.g. do we select the
planning unit or not?) which is common for simple problem formulations. In
spatial conservation planning, actions are usually purchasing land but they
could also include actions such control of invasive species or fire management.
In fact, ai does not necessarily have to be binary or restricted to the value
of 1 as in the case of xi. It may also take continuous or discrete values. For
example, if the planning units are allocated by different types of land use,
the control variable can look like this:

ai ∈ {1 = agriculture, 2 = forestry, 3 = developed, 4 = natural} ∀i. (2.15)

This aspect is considered, for example, in the conservation planning soft-
ware Marxan with Zones [29, 21]. Having the opportunity of choosing among
several actions can make the optimization problem more complex since ac-
tions taken in one site can also have an influence on another planning unit.
However, in scenario evaluation, one has the choice amongst different policies,
each consisting of several actions, which leads to fewer complexities.

Additionally, cost ci and the occurrence levels of the features rji can also
be defined as functions. They can be depend on the actions taken in one site
ai, e.g. rji(ai), or even on the actions taken in the entire landscape a, for
instance rji(a). Environmental conditions or the occurrence levels of other
features in neighbouring sites might also influence the representation level of a
feature in a certain planning unit. Therefore, it may also be useful to consider
connectivity-related factors. And since in practice, it is often difficult to
obtain absolute values for rji, statistical estimates are used frequently. The
problem’s structure would become even more complex if we did not assume
a static, but a dynamic model with time-varying occurrence levels.

An example of a multiple-action conservation prioritization problem using
the utility maximization approach mentioned before is given in Example 2.2.
Note that in this example, we are describing a static optimization problem
with ai being the decision variables for all i. The x̄i only represent the initial
state of the reserve system. This means that x̄ is given and the optimization
is going to be over the actions a only.
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Example 2.2: (Utility maximization problem)
Let x̄ = (x̄1, ..., x̄n) be the structure of the reserve network with x̄i ∈ {0, 1} for
all i and a = (a1, ..., an) is the vector of actions taken through the landscape,
with ai taking values in the set of possible actions {1, 2, 3, 4}. Let the level of
species representation be a function rji(a) which means that the occurrence
level of a feature in a site is dependent on the actions taken in the entire
landscape. Analogously let the cost ci(ai) of site i be a function of the
action taken in the respective site. Furthermore, let fj be a benefit function
transforming the representation of feature j to conservation value. Then, the
following problem is called a multiple-action utility maximization problem:

max
a∈{1,...,4}n

∑
j∈J

fj

(∑
i∈I

x̄irji(a)

)

s.t.
∑
i∈I

ci(ai) ≤ B

ai ∈ {1, 2, 3, 4} ∀ i ∈ I.

(2.16)

Here, x̄ is not a variable, but has fixed values and the decision variable
is a. As in (2.12), there is a budget constraint. However, in this problem
formulation, the cost are not influenced by the structure of the reserve system
itself, but by the actions taken in the respective sites. In addition to a budget
constraint, there are also other possible constraints, such as political or social
ones that can have an influence on the feasibility of certain actions.

Depending on its formulation, a conservation prioritization problem may
turn out to be non-linear. For simplicity, we will focus in on the minimum
set coverage problem (2.2) and its relaxation (2.11) only, assuming that all
variables and constraints are linear and therefore, defining the minimum set
coverage problem as a 0-1 multidimensional knapsack problem. Now we can
consider it as an integer linear optimization problem (ILP) and the land
allocation problem as a linear optimization problem (LP), respectively.

In order to illustrate the optimization problems and the techniques pre-
sented in this thesis, we introduce a fictitious data set in the example below.

Example 2.3: (Illustrative data set)
Table 2 shows the represenation levels of two species in three sites and their
targets. Furthermore, costs for each planning unit are given in the last
column.
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Site Occurence level
species 1

Occurence level
species 2

Cost in $

1 3 6 400
2 0 4 300
3 4 3 600

Target 3 7 -

Table 2: Illustrative data set.

Using the information given above, we obtain the minimum set coverage
problem

min
x∈{0,1}3

400x1 + 300x2 + 600x3

s.t. 3x1 + 4x3 ≥ 3

6x1 +4x2 + 3x3 ≥ 7
(2.17)

xi ∈ {0, 1} ∀ i ∈ I.

It can be seen that the optimal solution of this problem is selecting sites
1 and 2 for conservation, i.e. x∗ILP = (1, 1, 0)T , protecting 3 individuals of
species 1 and 10 individuals of species 2. Thereby, we even exceed the target
for species 2 obtaining minimum cost at $700.

Figure 1 shows a three-dimensional plot of this optimization problem.
The light blue surface illustrates the first, and the dark blue the second
constraint. Thus, the polyhedron, which is being generated by these con-
straints and the variable boundaries, forms the set of feasible solutions. The
red surface shows the objective function at a total cost level of $700. One
can imagine that during the optimization process, the plane moves from the
upper part of the polyhedron to the lower one, since we are solving a mini-
mization problem. Therefore, the optimal feasible solution lies at the lowest
vertex of the considered polyhedron, right at the intersection of the red plane
with the lowest feasible point. In our case, this happens at point P1 = x∗ILP .

As it can be seen in Figure 1, P2 = (1, 0.25, 0) is an even lower vertex
than P1. But since x2 = 0.25 is not an integer solution, it is only feasible
for the relaxed version of the ILP, i.e. the land allocation problem. Here we
allow xi to take any value in the interval [0, 1] for all i. More precisely, this
means that in this case, it is indeed allowed to protect only a quarter of site
2. Hence, x∗LP = P2 is the optimal solution of the LP with total cost of $475.
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Figure 1: Three-dimensional plot of the illustrative data set with P1 being the
optimal integer solution and P2 the optimal solution of the relaxed problem.

In the example above, we solved the optimization problem graphically.
For real-world conservation prioritization problems, we have to come back
to algorithms, three of which are presented here and are applicable to the
minimum set coverage problem and the land allocation problem respectively.
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3 Solving Conservation Prioritization Prob-

lems

Depending on their mathematical classifications, there exist many different
approaches to solving optimization problems. Exact resolution methods such
as branch and bound or the simplex algorithm find optimal solutions, but can
be very time-consuming when it comes to high-dimensional problems with
many constraints [9]. In contrast to this, heuristic optimization techniques
do not guarantee to find optimal, but good feasible solutions in reasonable
computation times [18].

The minimum set coverage problem from Chapter 2 is considered to be a
so-called NP-Complete optimization problem. In particular, “optimal solu-
tion times for problems of this category rise faster than linearly with the size
of the problem, where the problem size is the number of planning units and
number of conservation features” [18]. Practically, it is not often possible
to solve this problem type with an exact method and heuristics such as the
simulated annealing algorithm must be applied.

The land allocation problem, however, can be solved quickly by exact
approaches, for example with the simplex algorithm.

In this chapter we are going to present two exact resolution methods:
first giving a brief introduction to the branch-and-bound approach, and then
focusing more on the details of the dual bounded simplex algorithm. Fur-
thermore, we will explain simulated annealing and here in particular, the
underlying algorithm of the software Marxan which is widely used for solv-
ing conservation prioritization problems [18].

3.1 Branch & Bound

Branch and bound methods can be used to find integer solutions of a given
ILP such as minimum set coverage problems with a small underlying data
set. Without the integer constraints, optimal solutions can be found at the
vertices of a feasible set, whereas in integer programming, this is not always
the case. Optimal solutions can be far away from any vertex and may even
lie amidst the search space and not at its border.
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The idea of branch and bound is to divide an ILP into sub-problems and
use the lower bounds of their objective function values to reduce the size of the
search space. There are different approaches for the branching and bounding
of an optimization problem. In this section, we will present Dakin’s method
for minimization problems based on the description in Domschke and Drexl
2005 [9], modified for the problem type considered here.

Branching divides the current initial problem P0 into k sub-problems
P1, ..., Pk such that

X(P0) =
k⋃

i=1

X(Pi) and X(Pi) ∩X(Pj) = ∅ ∀i 6= j,

with X(Pi) being the set of feasible solutions of problem Pi.

Thereby, we create a search tree whose individual nodes must be checked
for optimal solution candidates. In order to restrain the branching process,
the algorithm provides rules for the exclusion of sub-problems from the search
list (bounding).

Therefore, we set the initial global upper bound of the objective function
value to F := +∞ or find a better value with the aid of a heuristic approach.
In order to evaluate if a sub-problem Pi must be branched again, we must find
its local lower bound F i by solving the relaxed problem P

′
i and comparing it

to the incumbent F . The relaxation can be solved by the simplex algorithm,
for instance.

If one of the following cases applies to the optimal objective function
value of P

′
i , the sub-problem will be removed from the search list:

(i) (F i ≥ F ): Since X(Pi) ⊆ X(P
′
i ) ∀i, the optimal solution of the sub-

problem cannot be better than the current best solution.

(ii) (F i < F and the optimal solution of P
′
i is feasible for Pi): A new global

best solution has been found. Save the solution and set F := F i.

(iii) (X(P
′
i ) = ∅): X(Pi) = ∅.

In all other cases, the problem must be branched and the sub-problems
added to the search list. One possibility for branching gives the following
theorem.
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Theorem 3.1: (Branching, [9])
Let x∗i be an optimal solution of P

′
i . Let x∗j be a non-integer component of

x∗i . Then, the sub-problems of Pi can be formed by

Pi1 := {xi ∈ X(Pi) | xj ≤ bx∗jc} and Pi2 := {xi ∈ X(Pi) | xj ≥ dx∗je}.

Once the search list is empty, the algorithm terminates and the current
F and its corresponding solution form the global optimum. A flow chart of
the presented algorithm can be found in Appendix A.

Remark 3.1: The performance of the algorithm is also dependent on the
rule for selecting a sub-problem from the search list. This can be done, for
example, by applying depth-first search or breadth-first search. In their book,
Domschke and Drexl [9] give a brief overview of different approaches.

Let us now give a small example of Dakin’s branch and bound algorithm.

Example 3.1: (Branch & Bound algorithm)
Consider the optimization problem

min
x

200x1 + 500x2

s.t. x1 + 2x2 ≥ 2
2x2 ≥ 1

x1, x2 ∈ [0, 1]

By having a closer look at the problem, we can find a feasible initial solution
x0 = (1, 1)T with F 0 = 700. Thus, we define the upper bound of the objec-
tive function value by F := 700.

Problem P0: In solving the relaxation P
′
0, we obtain x∗0 = (1, 1

2
)T with F 0 =

450. Since F < F but x∗0 is not feasible in P0, we have to branch the initial
problem into the sub-problems

P1 := {x0 ∈ X(P0) | x2 ≤ bx∗2c = 0} and P2 := {x0 ∈ X(P0) | x2 ≥ dx∗2e = 1}.

Figure 2 shows the search tree of the optimization problem.
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Problem P1: With the additional constraint x2 ≤ 0, it follows that x2 = 0.
As such, X(P

′
1) = ∅ and thus, X(P1) = ∅ as well. Therefore, we can remove

P1 from the list and continue with P2.

Problem P2: Here, the additional constraint x2 ≥ 1 leads to x2 = 1. After
solving the relaxation P

′
2, we obtain x∗2 = (0, 1)T with F 2 = 500 < F . Since

x∗2 is an integer solution, it is feasible in P2 and we have thus found a new
best solution. Therefore, we set F := 500. Having no problem left in the
search list, the algorithm terminates with the optimal solution x∗2.

Figure 2: Search tree of the branch & bound example [9].

As we know from Chapter 2, the relaxation of the minimum set coverage
problem is the land allocation problem. This optimization problem can be
solved by applying a special variant of the simplex algorithm, called the dual
bounded simplex, which will be presented in the following section.

3.2 The Dual Bounded Simplex Algorithm

In this section, we will explain the dual bounded simplex algorithm which is
also known as the dual simplex with box constraints. In order to understand
the algorithm itself, it is not necessary to define duality right away but we
will do so later on in Chapter 4.1.1. After a brief introduction, we will give
a detailed description of the algorithm and illustrate it by using the data
of the optimization problem presented in Example 2.3. We will also briefly
discuss the issue of primal and dual degeneracy. Additionally, a summary
of the dual bounded simplex algorithm will be provided in Appendix B. An
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overview of the notation used in this chapter can be found in Table 3.

Symbol Explanation

i ∈ {1, ..., n} Index for decision variables
j ∈ {1, ...,m} Index for constraints

s ∈ {1, ..., n+m} Column index of Â and ĉT

k Index of the pivot row
l Index of the pivot column
A = (aji) Coefficient matrix of the decision variables

Ã ∈ Rm×m Coefficient matrix of the slack variables

Â = (âjs) Coefficient matrix of the decision and slack variables
b = (b1, ..., bj)

T Vector of the RHS
c = (c1, ..., cn)T Cost vector of decision variables
c̃ = (c̃1, ..., c̃m)T Cost vector of slack variables
ĉ = (ĉ1, ..., ĉn+m)T Cost vector of decision and slack variables
x = (x1, ..., xn)T Vector of decision variables
x̃ = (x̃1, ..., x̃m)T Vector of slack variables of the constraints
x̂ = (x̂1, ..., x̂n+m)T Vector of decision and slack variables
x′ = (x′1, ..., x

′
n)T Vector of complementary variables of x

u = (u1, ..., un)T Vector of upper bounds of the decision variables
z Objective function value

Table 3: Notation.

Let us recall the structure of the static minimum set coverage problem
(2.2) as

min{cTx | Ax ≥ b, 0 ≤ x ≤ u},
with c ∈ Rn, b ∈ Rm

+ , A ∈ Rm×n and u := 1 being the vector of upper
bounds of the variables xi. Transforming this into the initial form required
by the simplex algorithm we obtain

−max{−cTx | −Ax ≤ −b, 0 ≤ x ≤ u}. (3.1)

Since −b ≤ 0, the problem is primal infeasible, but with −c ≤ 0, it is dual
feasible instead. This means that in order to find an optimal solution to the
optimization problem, we can use Lemke’s dual simplex algorithm [7]. With
respect to the upper bounds of the decision variables, we will use a special
variant for bounded variables, called the dual bounded simplex algorithm.
This algorithm was presented by Wagner in 1958 [26].

In order to use the dual bounded simplex algorithm, the matrix A must
be of full rank. This means that there are no lines or columns consisting of
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zeros only, nor are any of them linearly dependent. If A is, for example, the
matrix of the species representation levels, like in the minimum set coverage
problem, the targets (here bj) must not be greater than the total amount of
the respective individuals available. Therefore, to avoid infeasibility, it must
hold that ∑

i∈I

aji ≥ bj

for all j ∈ J .

Once the optimization problem has been converted to the form (3.1), we
add a vector of m so-called slack variables x̃ to the constraints such that the
inequalities become equations, i.e.

−max{−cTx | −Ax + Ix̃ = −b, 0 ≤ x ≤ u, x̃ ≥ 0}, (3.2)

with I ∈ Rm×m being the unit matrix. Furthermore, we add another vector
of n slack variables x′ ≥ 0 to the upper bound relations such that

x + x′ = u. (3.3)

We call x′i the complementary variable of xi for all i in I.

Furthermore, we define the vector of the decision variables and the slack
variables of the constraints by

x̂ := (x, x̃)T ∈ Rn+m

and the corresponding cost vector by

ĉ := (−c, c̃) ∈ Rn+m.

Additionally, let
Â := (−A, Ã) ∈ Rm×n+m,

with âjs being the element of the j-th row and s-th column of matrix Â.

Let us now define the terms basis, basic variable and feasible basis so-
lution which we are going to need especially in Section 3.2.2 about primal
degeneracy.

Definition 3.1: (Basis, [7])
We call a vector B of the indices of m linearly independent columns of the
matrix [−AI] a basis of Rm. All columns that are not part of B are referred
to as the non-basis N .
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Definition 3.2: (Basic variable, [7])
A variable xj with j ∈ B is called a basic variable. The vector of all basic
variables is denoted by xB. All other variables are non-basic variables and
are denoted by xN .

Definition 3.3: (Feasible basis solution, [7])
A solution x of the feasible set X̂ := {x̂ ∈ Rn+m | −Ax + Ix̃ = −b, 0 ≤ x ≤
u, x̃ ≥ 0} is called a feasible basis solution, if there exists a basis B with

(i) [−AI]BxB = −b,

(ii) xN = 0,

(iii) xj ≥ 0 ∀ j ∈ B.

In this case, B is called a feasible basis.

Theorem 3.2: A point x̂ ∈ X̂ is a vertex of X̂, if and only if x̂ is a basis
solution.

The proof of this theorem can be found in Burkhard and Zimmermann
[7, p. 33].

3.2.1 Algorithm

Analogous to the primal simplex, the dual simplex algorithm starts with
a feasible basis, though here, the initial basis must be dual feasible. The
algorithm moves along adjacent feasible vertices until it finds a dual optimal
solution. Here, optimal means that the solution is dual as well as primal
feasible. Even though at each step of the algorithm the current solution is
primal optimal, the aim is to reach also primal feasibility, while retaining
dual feasibility [7].

If a variable xi is part of the basis and exceeds its upper bound ui during
the optimization process, the idea of the bounded simplex is that it gets
substituted by its complementary variable x′i = ui− xi. Thus, the algorithm
guarantees that the variables are always within their bounds and once an
optimal solution has been found, the complementary variables can be re-
substituted easily. This method reduces some of the computational effort
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given that it is not necessary anymore to introduce additional constraints for
variable boundaries. Still, the algorithm becomes a bit more complex, since
more value comparisons are needed, e.g. due to the boundary checks at each
pivot step [26].

Table 4 shows the initial dual simplex tableau.

x x̃
z −c c̃ 0
x̃ −A I −b

Table 4: Initial dual simplex tableau.

The first line of the tableau holds the names of the decision variables
and the slack variables of the constraints. Below these, in the first column,
we note down a z for the objective function value, which is equal to 0 at
the beginning of the optimization process. Therefore, we write 0 in the last
column. The second till the n+m-th column of the second line contain the
costs of each variable, whereupon we use the negative cost vector −c for the
decision variables and a vector of zero cost, i.e. c̃ = 0 for the slack variables.

The first column of the following lines consists of the names of the basis
variables. Initially, these are all the slack variables of the constraints, since
we start at the dual feasible basis x̃initial := −b. All non-basis variables
are considered to be zero. From the second column on, we note down the
negative of matrix A followed by the coefficient matrix of the slack variables
Ã which initially equals the unit matrix. In the last column, we add the
negative of the RHS b.

Before we start the optimization itself, we check if the current solution is
already optimal, i.e. −bj ≥ 0 for all j, ĉs ≤ 0 for all s ∈ {1, ..., n+m} and all
variables are within their bounds. If this is not the case, we choose a pivot
row by selecting the most negative variable, i.e. the row with the smallest
negative bj. Let k be the index of the pivot row. Then, the corresponding
pivot element âkl is the one that fulfils

min

{
z − ĉs
−âks

}
∀s ∈ {1, ..., n+m}, âks < 0,

with l being the index of the pivot column. Hence, the k-th variable is leaving
the basis and will be replaced by the l-th variable. If âks ≥ 0 for all s, then,
the given optimization problem has no feasible solution.
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Now, we set up a tentative new tableau by carrying out the usual pivot
step. This means that we divide all elements of the pivot row by the pivot
element, i.e.

â′ks :=
âks
âkl

and − b′k :=
−bk
âkl

so that â′kl = 1. Leaving out the pivot element itself, we generate zeros in the
pivot column by multiplying the pivot row with the factor −âjl and adding
it to the j-th constraint, i.e

â′js := âjs + â′ks · (−âjl) and − b′j := −bj + (−b′k) · (−âjl) ∀j, j 6= k.

Having a look at the values of the basis variables in the last column, we
can check if they are within their bounds. Note that due to (3.3), the comple-
mentary variables are bounded as well. Only the decision variables and their
complements can exceed their upper bounds, since the slack variables are
unbounded above. So in case a variable, say xp, in the r-th row of the basis
is above its upper bound, we substitute it by its complementary variable x′p.

In doing so, we first change the sign of all elements of row r in the simplex
tableau, leaving out the factor 1 which appears in the correspondent column
of xp. Then, we replace the label and the value of xp by its complementary
variable, i.e.

x′p = up − xp
is going to be the new RHS of the correspondent constraint.

Certainly, the substitution also affects the objective function. There, we
add the product cpup to the current objective function value z, i.e.

z′ = z + cpup

and change the sign of cp.

Remark 3.2: In order to explain what is happening at the substitution of
a variable, consider the optimization problem after the pivot step

−max
{

ĉ
′T x̂ | Â′x̂ = −b, x̂ = (x, x̃)T , 0 ≤ x ≤ u, x̃ ≥ 0

}
.

In more detail, the constraints can be written as
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

p

â′1,1x1 + . . . +0xp + . . . +â′1,nxn +â′1,n+1x̃1 + . . . +â′1,n+mx̃m
...

...
...

...
...

r â′r,1x1 + . . . +1xp + . . . +â′r,nxn +â′r,n+1x̃1 + . . . +â′r,n+mx̃m
...

...
...

...
...

â′m,1x1 + . . . +0xp + . . . +â′m,nxn +â′m,n+1x̃1 + . . . +â′m,n+mx̃m

 =


−b′1

...
−b′r

...
−b′m

 .

Let us now substitute xp by its complement using up − x′p. Thus, we ob-
tain



p

â′1,1x1 + . . . +0(up − x′p) + . . . +â′1,n+mx̃m
...

...
...

r â′r,1x1 + . . . +1(up − x′p) + . . . +â′r,n+mx̃m
...

...
...

â′m,1x1 + . . . +0(up − x′p) + . . . +â′m,n+mx̃m

 =


−b′1

...
−b′r

...
−b′m

 .

Substracting (0, . . . , up, . . . , 0)T and multiplying the r-th row by −1, gives



p

â′1,1x1 + . . . +0x′p + . . . +â′1,n+mx̃m
...

...
...

r −â′r,1x1 − . . . +1x′p − . . . −â′r,n+mx̃m
...

...
...

â′m,1x1 + . . . +0x′p + . . . +â′m,n+mx̃m

 =


−b′1

...
up + b′r

...
−b′m

 .

Focusing on the objective function, the substitution of xp leads to

z = −c1x1 − . . .− cpxp − . . .− cnxn + c̃1x̃1 + . . .+ c̃mx̃m
= −c1x1 − . . .− cp(up − x′p)− . . .+ c̃mx̃m

⇔ z + cpup = −c1x1 − . . .+ cpx
′
p − . . .+ c̃mx̃m

,

which explains the transformation of the simplex tableau stated above.

After the substitution, we obtained the finalized new tableau. Taking
this, we go back to the optimality test and start the next iteration of the
algorithm, until an optimal solution has been found. The same applies, if no
basis variable exceeds its upper bound.
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Once the algorithm has terminated, an optimal solution can be read from
the final tableau. All non-basis variables take the value 0, whereas the values
of the basis variables can be found in the last column of the tableau. Note
that all complementary variables must be re-substituted by

xi = ui − x′i.

In some special situations it may happen that there are multiple optimal
solutions or that a solution is degenerate. These cases will be covered in
Section 3.2.2.

If at any step of the algorithm all elements of the RHS −b are positive
(the problem is primal feasible), but there is at least one positive element
in the cost vector ĉ, the problem is not dual feasible anymore and we have
to continue the optimization using the primal simplex algorithm. Thus, it
may happen that during the optimization, problem solvers switch between
the primal and the dual simplex algorithm.

Let us now give an example of the dual bounded simplex algorithm.

Example 3.2: (Dual bounded simplex algorithm)
Consider the linear optimization problem from example 2.3. Transforming
it to the required form by the simplex algorithm and adding slack variables,
we obtain

−max
x
− 400x1 − 300x2 − 600x3

s.t. −3x1 −4x3 +1x̃1 = −3
−6x1 −4x2 −3x3 +1x̃2 = −7

for the objective function and the constraints, and

x1 + x′1 = 1
x2 + x′2 = 1
x3 + x′3 = 1

for the upper bound relations. Now, we set up the initial dual simplex tableau
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x1 x2 x3 x̃1 x̃2

z −400 −300 −600 0 0 0
x̃1 −3 0 −4 1 0 −3
x̃2 −6 −4 −3 0 1 −7

Table 5: Initial dual simplex tableau of the illustrative data set.

This tableau is dual feasible, but primal infeasible, since the values of the
RHS are negative. Therefore, the tableau is not optimal and we choose the
pivot row by selecting the most negative bj, i.e. b2 = −7. We obtain the
pivot element by determining the element â2s ≤ 0, which corresponds to

min

{
0 + 400

6
,
0 + 300

4
,
0 + 600

3

}
= 662

3
.

The result is â21 = −6. This implies that x̃2 is going to leave, and x1 is going
to enter the basis.

Carrying out the pivot step leads to the tentative new tableau

x1 x2 x3 x̃1 x̃2

z 0 −100
3
−400 0 −200

3
4662

3

x̃1 0 2 −5
2

1 −1
2

1
2

x1 1 2
3

1
2

0 −1
6

7
6

Table 6: Tentative new tableau.

In the next step, we check if all basis variables are within their bounds.
For x̃1 = 1

2
this is the case, but x1 = 7

6
exceeds its upper bound by 1

6
.

Therefore, we have to substitute this variable by its complement

x′1 = 1− x1 = −1
6

which leads to the following final new tableau

x′1 x2 x3 x̃1 x̃2

z 0 −100
3
−400 0 −200

3
4662

3

x̃1 0 2 −5
2

1 −1
2

1
2

x′1 1 −2
3

−1
2

0 1
6

−1
6

Table 7: Finalized new tableau.
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Here, we changed all signs of the second row, leaving out the factor â21 =
1. Additionally, we changed the label of x1 to x′1 and entered the value of
the complementary variable into the RHS. Since the cost coefficient of x1 is
0, nothing happened in the objective function.

Now, we start the next iteration of the algorithm. With b2 ≤ 0, the
tableau is not optimal and just like before, we continue by choosing the
second row as the pivot row. Furthermore, we identify â22 = −2

3
as the pivot

element, since it fulfils

min

{
4662

3
+ 100

3
2
3

,
4662

3
+ 400
1
2

}
= 750.

With x′1 leaving, and x2 entering the basis, we carry out the next pivot step
and obtain

x′1 x2 x3 x̃1 x̃2

z −50 0 −375 0 −75 475

x̃1 3 0 −4 1 0 0

x2 −3
2

1 3
4

0 −1
4

1
4

Table 8: Optimal tableau.

As it can be seen in the tableau, all elements of ĉ are non-positive and all
elements of the RHS are positive. In addition, all variables are within there
bounds. Hence, the tableau is optimal and we can read off the solution

(x′1, x2, x3, x̃1, x̃2)T = (0, 1
4
, 0, 0, 0)T ,

where all non-basis variables take the value 0 and all basis variables the values
of the corresponding RHS.

By re-substituting x′1 by x1 = 1− x′1 = 1, we obtain the optimal solution

x∗ = (1, 1
4
, 0)T ,

with z∗ = 475.

There are some special situations which can appear during the optimiza-
tion of a linear problem. The following section will cover the cases of primal
and dual degeneracy, illustrating each with a small example.
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3.2.2 Primal & Dual Degeneracy

Definition 3.4: (Primal degeneracy, [9])
If there exists at least one j ∈ B with xj = 0, the basic solution is called
primal degenerate.

Primal degeneracy implies that there exist several basis solutions for
the same optimal vertex. This occurs, if an optimization problem is over-
determined, i.e. there are more constraints than variables. Graphically, we
can choose among several constraint combinations in order to describe the
same optimal solution.

If we substitute a variable xi by its complement x
′
i for at least one i ∈ I

during the optimization process, we also change the set X̂ to X̂
′
. In such a

case, a basis solution x̂ is not a vertex of X̂, but of X̂
′
. In order for it to

become a vertex of X̂, the respective variables must be re-substituted.

According to the following scheme, we can thus decide, whether a vertex
of the initial optimization problem is degenerate or not:

(i) If 0 < xi ≤ 1 and 0 < x
′
i < 1 for all i ∈ I ∩ B, then the basis solution

and the vertex are non-degenerate.

(ii) If there exists an i ∈ B with x̂i = 0, then the basis solution and the
vertex are degenerate.

(iii) If there exists an i ∈ I ∩ B with x
′
i = 1, then the basis solution is

non-degenerate, but the vertex is degenerate.

(iv) If there exists an i ∈ I ∩ B with x
′
i = 0, then the basis solution is

degenerate, but the vertex is non-degenerate.

Example 3.3: (Primal degeneracy)
If we have again a look at the final optimal simplex tableau in Table 8, we
can see that the optimal solution x∗ = (1, 1

4
, 0)T is degenerate, since the basis

variable x̃1 takes the value 0. If we choose the first row as the new pivot row
and execute another pivot with the pivot element â13 = −4, we obtain the
following new optimal tableau
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x′1 x2 x3 x̃1 x̃2

z −3311
4

0 0 −933
4
−75 475

x3 −3
4

0 1 −1
4

0 0

x2 −15
16

1 0 − 3
16

−1
4

1
4

Table 9: New optimal tableau.

Obviously, this tableau shows the same optimal solution as before, but
the basis has changed from former (x̃1, x2) to (x3, x2) now. Also, in the plot
of this optimization problem in Figure 1, it can be seen that the point P2,
which corresponds to our optimal solution, is degenerate: we are considering
a three-dimensional problem, which means that there are only 3 constraints
needed in order to define the optimal vertex. However, P2 is at the intersec-
tion of 4 constraints - the light and dark blue (target restrictions), and the
planes of the two variable restrictions x1 ≤ 1 and x3 ≥ 0.

Thus, there are
(

4
3

)
= 4 possibilities to describe x∗, i.e. 4 different basic

solutions for one optimal solution.

Primal degeneracy can cause the simplex algorithm to cycle through the
basic solutions of a vertex, although there are ways of modifying the algo-
rithm in order to avoid such situations [9]. In this thesis, we will focus more
on the effects of degeneracy on shadow prices. We will have a closer look
into the matter in Chapter 4.1.3.

Definition 3.5: (Dual degeneracy, [9])
If at least one of the non-basis variables has zero cost in an optimal tableau,
the optimization problem is called dual degenerate.

Analogously to primal degeneracy, dual degeneracy occurs if at least one
of the basis variables of the corresponding dual problem takes the value 0 [9].
In case of dual degeneracy, an optimization problem has multiple optimal
solutions. These can be obtained by executing another pivot, where the
entering variable is one of the non-basis variables with zero cost.

Corollary 3.1: (Parametric solution, [9])
Let x∗1 and x∗2 be two optimal basic solutions of a dual degenerate optimiza-

tion problem. Then, all non-basic solutions which can be obtained by the
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convex combination

x∗ = λ · x∗1 + (1− λ) · x∗2, 0 ≤ λ ≤ 1

are optimal as well.

The corollary implies that in case of dual degeneracy, all optimal solutions
lie on a line between two optimal basic solutions. Graphically, this means
that the objective function is parallel to a non-redundant constraint. The
following example will illustrate this correlation.

Example 3.4: (Dual degeneracy)
Consider the optimization problem

−max
x
− 200x1 − 400x2

s.t. −2x1 − 4x2 + 1x̃1 = −1

with the upper bound relations

x1 + x′1 = 1
x2 + x′2 = 1 .

This leads to the following initial dual simplex tableau

x1 x2 x̃1

z −200 −400 0 0

x̃1 −2 −4 1 −1

Table 10: Initial tableau.

Since the ratios for identifying the pivot column are equal, we pick â11 =
−2 as the pivot element. After executing a pivot step, we obtain

x1 x2 x̃1

z 0 0 −100 100

x1 1 2 −1
2

1
2

Table 11: Optimal tableau 1.
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This tableau is optimal and we can read off the solution x∗1 = (1
2
, 0)T .

Having a closer look at the cost line of the tableau, it can be seen that the
non-basis variable x2 has zero cost, i.e. ĉ2 = 0. Therefore, the optimization
problem is dual degenerate and we can obtain another optimal solution by
letting x2 enter the basis and executing another pivot step:

x1 x2 x̃1

z 0 0 −100 100

x2
1
2

1 −1
4

1
4

Table 12: Optimal tableau 2.

This tableau gives the optimal solution x∗2 = (0, 1
4
)T . In Figure 3, one

can see that the target constraint is parallel to the objective function (red).
Thus, the simplex algorithm detected both vertices, P1 = x∗1 and P2 = x∗2, as
optimal solutions. Furthermore, all points on the line between these solutions
are optimal, which means that we can calculate a parametric optimal solution
by applying the result of Corollary 3.1:

x∗ = λ · (1
2
, 0)T + (1− λ) · (0, 1

4
)T , 0 ≤ λ ≤ 1.

Figure 3: Plot of a dual degenerate optimization problem. All points on the
line between P1 and P2 are optimal.

With the branch-and-bound and the dual bounded simplex algorithm, we
already presented two direct resolution methods. In the section below, we
are now going to discuss the heuristic approach of simulated annealing.
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3.3 Simulated Annealing (Marxan)

Simulated annealing is an algorithm for solving a diversity of optimization
problems which mimics the physical process of heating metal and cooling it
again. Depending on the temperature control, this treatment alters the phys-
ical and chemical properties of the metal in order to make it more workable.
At the beginning of the process, the temperature is set very high and the
molecules whirl around, sometimes improving and sometimes degrading the
structure of the metal. With a decreasing temperature, the molecules tend
to arrange themselves in proper order which means that the acceptance of
degrading movements becomes lower until the process stops [25].

In the first part of this section, we will give a brief explanation of the
algorithm itself, before focusing on its application to conservation prioriti-
zation problems in the second part. There, we will introduce the software
Marxan which uses simulated annealing as an underlying algorithm in order
to solve the minimum set coverage problem, presented in Chapter 2.

3.3.1 Algorithm

In Chapter 5.3.1 of [18], Moilanen and Ball discuss the topic of simulated an-
nealing in spatial optimization. In doing so, they are describing the simulated
annealing algorithm as follows:

Let x0 be an initial feasible solution which has been generated either ran-
domly or by some heuristic algorithm and let T0 be the initial temperature.
Now, we calculate new potential solutions iteratively. For r = 1, ..., R, set
the temperature parameter

T := T0f(r),

where f(r) is a decreasing function of iteration round r. Then, generate a
new solution candidate x′0 as a stochastic modification of x0.

If x′0 improves the system, i.e.

∆z := z(x′0)− z(x0) < 0

(when minimizing), the new solution will always be accepted and we set

x0 := x′0
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for the next iteration. If x′0 is performing worse than the initial solution, it
will only be accepted with probability

exp

(
−∆z

T

)
.

One can see, that the algorithm also accepts non-improving solutions in
order to escape local optima. At the beginning of the optimization process,
this happens very often but the likelihood diminishes with every further
iteration. Once all R iterations have been made, or after a certain number of
iterations without finding any improving solution, the algorithm terminates.

Figure 4 illustrates the optimization process of the simulated annealing
algorithm. The objective is to find the global minimum of function z(x). The
algorithm starts at the initial solution x0 (the first black ball on the left) and
then moves to another one with a better performance of the objective function
(second black ball). At this point, if the algorithm only accepted improving
solution candidates, it would get trapped in a local optimum. However, in
the example, the temperature is still high enough so that it can escape this
solution by accepting another, which is performing less well than the current
solution (i.e. the first green ball). After two more iterations choosing only
improving solutions, the algorithm finally finds the global optimum x∗ (red
ball) and terminates.

Figure 4: Example of the simulated annealing algorithm [25].

Simulated annealing is a heuristic algorithm which means that it does not
necessarily find a global optimum, even though the likelihood increases with
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the number of iterations. Thus, a given result should mostly be considered
as an approximate solution to the optimization problem. Furthermore, the
efficiency of the algorithm implementation is highly dependent on the way of
how new solutions are generated [18].

The following pseudo-code gives a brief summary of the simulated an-
nealing algorithm presented above.

Algorithm 3.1: (Pseudo-code of the simulated annealing algorithm, [18])

0. Generate initial feasible solution x0. Let z(x) be the performance of
solution candidate x0.

1. FOR r = 1, 2, ..., R iterations DO

1.1 SET temperature T = T0f(r), where T0 is initial temperature and
f(r) a decreasing function of iteration round r.

1.2 Generate next solution candidate x′0 as stochastic modification of
current solution x0.

1.3 SET ∆z := z(x′0)− z(x0).

1.4 IF ∆z < 0 (when minimizing), accept improving solution and set
x0 := x′0.
ELSE accept x′0 with probability exp

(−∆z
T

)
.

3.3.2 Marxan

Marxan is a freely available software which uses simulated annealing in order
to solve the type of spatial conservation prioritization problems which has
been introduced as the minimum set coverage problem in Chapter 2. The
name Marxan stands for ’marine reserve design using spatially explicit an-
nealing’. The software has already been used by over 1,200 organizations
from more than 100 countries and one of the biggest projects where it has
been applied, was the rezoning of the Great Barrier Reef in 2004. [18, 21]

Marxan “interacts with a variety of geographical information system
(GIS) tools [and it] designs clumped reserve systems that make sense to a pol-
icy maker or planner” [18]. Mathematically, it solves optimization problems
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of the form

min
x∈{0,1}n

∑
i∈I

cixi + b
∑
i∈I

∑
h∈I

xi(1− xh)cvih

s.t.
∑
i∈I

rjixi ≥ tj ∀ j ∈ J

xi ∈ {0, 1} ∀ i ∈ I,

(3.4)

using the notation of Chapter 2 and with cvih being elements of the connec-
tivity matrix CV . This matrix contains the cost of the connection of sites i
and h, though cvih could also be set as the length of their physical boundary.
The parameter b is the so-called boundary multiplier and serves as a weight
of how important it is to have a highly connected reserve network [18]. If,
for example, a conservation planner prefers few big reserve systems to many
small ones, the boundary multiplier must be set with a high value.

Thus, Marxan aims to minimize a combination of the cost of the reserve
system

∑
i∈I
cixi and its boundary length b

∑
i∈I

∑
h∈I
xi(1− xh)cvih, whilst meeting

the target tj of each considered feature. Note that if we do not take into
account boundaries, i.e. b := 0, we obtain the minimum set coverage problem
(2.3).

After investigating several different methods, the developers of Marxan
found that simulated annealing would be the best to solve the above presented
optimization problem. It finds good solutions quickly for problems of different
sizes. Furthermore, simulated annealing makes the software very flexible
towards changes in the type of a problem, since non-linearities and other
complexities can be added easily [18].

Marxan generates multiple near-optimal solutions which is not necessarily
a drawback, considering that “for practical and political reasons, finding the
single best solution is not that useful in conservation planning” [18]. In fact,
decision makers prefer having a set of alternative solutions, seeing that it
may not be possible to put into practice a single optimal solution.

The following small example gives an illustration of how Marxan solves
a minimum set coverage problem.
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Example 3.5: (Marxan optimization process, [24])
Consider the optimization problem (2.17) from Chapter 2. Since we are
not taking into account any boundaries, the boundary multiplier is set 0. In
solving the problem, Marxan starts with a randomly chosen feasible solution,
say x0 = (1, 0, 1)T . This means that the software selects sites 1 and 3 for
conservation, as shown in Figure 5. This solution implies total cost of $1, 000.

Now, the algorithm selects a planning unit at random, e.g. site 2, and
changes its protection status. The new objective function value of $1, 300
would not improve the solution, but with the temperature still being high
enough, Marxan accepts the solution. However, the likelihood for this to
happen decreases with every iteration. In the next step, the software selects
site 3 and changes its status from protected to unprotected. With total cost
of $700, the new solution x′0 = (1, 1, 0)T improves the current and is thus
being accepted. In our little example, the algorithm terminates at this stage,
having found the optimal solution.

Figure 5: Marxan example using the illustrative minimum set coverage prob-
lem (2.17).

Now that we know how the minimum set coverage problem and its relax-
ation can be solved, we provided a basis for their sensitivity analysis which
we are going to discuss in detail in the next chapter.
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4 Sensitivity Analysis

In the context of conservation planning, the question of how the target setting
of a feature influences total cost of the reserve system can be answered with
the help of mathematical sensitivity analysis. In this chapter, we are going
to focus on the sensitivity analysis based on perturbations in the right-hand
side of an optimization problem. We will examine both, linear and integer
linear programming problems with a main emphasis on LPs.

In the LP section, we are going to define the so-called shadow prices,
the optimal solutions of the dual optimization problem, which Koopmans
interprets “as guides for the coordination of allocative decisions” [17, p. 215].
Against this background, we will furthermore cover the topic of degeneracy
and in the last section of this chapter, an overview of methods of sensitivity
analysis for ILPs will be given.

4.1 Linear Optimization Problems

In this section, we will first give some basics about linear optimization prob-
lems, before we define different types of shadow prices and interpret them
in the context of conservation planning. We start with the definitions of the
canonical forms of a linear optimization problem (LP) and its corresponding
dual (DLP).

Definition 4.1: (Primal linear optimization problem [1])
Let x ∈ Rn and c ∈ Rn

+. Furthermore, let A ∈ Rm,n and b ∈ Rm. The primal
linear optimization problem (P ) in canonical form is

(P ) min
x

cTx

s.t. Ax ≥ b (4.1)

x ≥ 0.

Additionally, we define the set of primal feasible solutions by

X(b) := {x ∈ Rn |Ax ≥ b,x ≥ 0} (4.2)
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and the primal optimal objective function value as a function of the problem’s
right-hand side b

F (b) := min
{
cTx |x ∈ X(b)

}
. (4.3)

According to this, the set of primal optimal solutions can be defined as

X∗(b) := {x ∈ X(b) | cTx = F (b)}.

Definition 4.2: (Dual linear optimization problem [1])
Consider the primal linear optimization problem (P ). The corresponding
dual problem (D) can be written as

(D) max
y

bTy

s.t. ATy ≤ c (4.4)

y ≥ 0,

with the dual variables y ∈ Rm.

From this formulation, we can deduce the feasible set of dual solutions

Y := {y ∈ Rm |ATy ≤ c,y ≥ 0}

and the dual optimal objective function value

G(b) := max{bTy |y ∈ Y }. (4.5)

Accordingly, the set of dual optimal solutions is

Y ∗(b) := {y ∈ Y |bTy = G(b)}. (4.6)

Remark 4.1: The dual of a dual linear optimization problem is the primal
problem again.

Let us now contemplate some relationships between primal LPs and their
duals which are important in the context of sensitivity analysis.



Sensitivity Analysis 43

Theorem 4.1: (Weak duality [7])

(i) If x ∈ X(b) and y ∈ Y , then

bTy ≤ cTx. (4.7)

(ii) Let X(b) 6= ∅. The set Y is empty, if and only if cTx is unbounded
below.

(iii) Let Y 6= ∅. The set X(b) is empty, if and only if bTy is unbounded
above.

The weak duality theorem states that the objective function value of a
feasible solution of the primal problem forms an upper bound for the objective
function value of a dual feasible solution.

Theorem 4.2: (Strong duality [7])
The dual linear problem has an optimal solution, if and only if its primal

does. Let x∗ be an optimal solution of the LP and y∗ an optimal solution of
its dual, then

cTx∗ = bTy∗. (4.8)

This means that the optimal objective function value of the primal prob-
lem can be equally described by multiplying its right-hand side b with the
optimal dual solution y∗.

We will use these relationships in the following section about shadow
prices.

4.1.1 Shadow Prices

In this section, we assume that all optimal solutions are non-degenerate. The
degenerate case will be covered later in Section 4.1.3. Before we get down
to the shadow price definitions, we will give some characteristics of function
F which we defined in equation (4.3). For this purpose, let us define its
directional derivative first.
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Definition 4.3: (Directional derivative [1])
The directional derivative of F at b in the direction of a vector u ∈ Rm is
defined by

DuF (b) := lim
t→0+

F (b + tu)− F (b)

t
.

The following lemma summarizes some important properties of F .

Lemma 4.1:

(i) F is a monotonically increasing function with respect to the partial or-
der on Rn

+.

(ii) F (b) = G(b),

(iii) F is a piecewise linear and convex function.

(iv) If F is finite, then DuF (b) exists.

Proof:

(i) From the definition of F in (4.3) and from X(b̃) ⊇ X(b) for b̃ ≤ b
with respect to the partial order on Rn

+, it follows that F (b̃) ≤ F (b).

(ii) Due to Theorem 4.2, it holds that F (b) = min
{
cTx |x ∈ X(b)

}
=

max{bTy |ATy ≤ c,y ≥ 0} = G(b).

(iii) This characteristic of F is mentioned in [5, p. 213]. However, we will
give the idea of the proof shortly in Remark 4.2.

(iv) With F being convex, we can infer the assertion from [3, p. 84].

Remark 4.2: The idea of showing that F is piecewise linear, is to divide
the polyhedron P (created by the constraints) into a set of disjoint sub-
polyhedra. If F is linear on each sub-polyhedron, then F is piecewise linear
on P . Furthermore, we assume that optimal solutions are always in the
vertices of P .
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Let yi ∈ Rm be such that G(b) = bTyi for a fixed b ∈ Rm. Then, yi is
optimal for a certain set Mi ⊆ Rm, with b ∈ Mi. This means, if b is not in
Mi, the optimal solution skips to another vertex.

Graphically, this can be seen in Figure 6. The black lines form the poly-
hedron and the continuous red line is the maximizing objective function for
which y1 is the optimal solution. If we now change b, the objective function
changes as well (dashed red line). At some point, y2 might then become the
optimal solution.

One can show that the different Mi are polyhedra themselves. Since for
b ∈ Mi G(b) = bTyi is linear on Mi, G (and thus F ) is piecewise linear on
P .

Additionally, G(b) = bTyi is convex for all i. The maximum of con-
vex function is convex as well and therefore, F is a convex piecewise linear
function.

Figure 6: Example for changing optimal vertices caused by different values
of b.

Corollary 4.1: Since F (b) = G(b), we can reformulate equation (4.6) as

Y ∗(b) := {y ∈ Y |bTy = F (b)}.

Another characteristic of F is that its subdifferential correlates with the
dual optimal objective function value.



Sensitivity Analysis 46

Definition 4.4: (Subdifferential of a convex function)
Let F be a convex function. Then,

∂F (b) :=
{
y ∈ Rm |F (b + u) ≥ F (b) + uTy ∀ u ∈ Rm

}
is called the subdifferential of F at b. The elements of ∂F (b) are called
subgradients.

Lemma 4.2: Let F be the function defined in (4.3). If F is finite, then,

∂F (b) = Y ∗(b).

In order to prove this lemma, we have to consider the following formula-
tions of functions F and G which are equivalent to the respective definitions
given in Equations (4.3) and (4.5).

As in Chapter 3.2, we add slack variables x̃ ≥ 0 to the constraints of the
primal optimization problem and obtain

F (b) = min{ĉT x̂ | Âx̂ = b, x̂ ≥ 0},

with Â = (A,−I) ∈ Rm×n+m, I unit matrix, ĉ = (c,0) ∈ Rn+m
+ and x̂ =

(x, x̃)T ∈ Rn+m. According to this formulation, the set of primal feasible
solutions changes to

X̂(b) = {x̂ ∈ Rn+m | Âx̂ = b, x̂ ≥ 0}.

The corresponding formulation of the dual value function is then

G(b) = max{bTy | ÂTy ≤ ĉ,y ≥ 0}.

The proof below is stated in [5, p. 216] and has been adjusted to our
problem formulation in terms of the notation used.

Proof: Let X̂(b) 6= ∅ and y∗ ∈ Y ∗(b). From strong duality (4.8), it follows
that bTy∗ = F (b). Consider now a vector b+u ∈ Rm such that X̂(b+u) 6= ∅.
Due to weak duality (4.7), it holds that

(b + u)Ty∗ ≤ ĉT x̂

for any feasible solution x̂ ∈ X̂(b). If we take the minimum over all x̂ ∈
X̂(b + u), we obtain

(b + u)Ty∗ ≤ F (b + u).
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Accordingly,

(b + u)Ty∗ − bTy∗ ≤ F (b + u)− F (b)

⇔ F (b + u) ≥ F (b) + uTy∗.

From this, we conclude that y∗ ∈ ∂F (b).

Proving the converse, we assume that y∗ ∈ ∂F (b) which implies that

F (b) + ((b + u)− b)Ty∗ ≤ F (b + u) (4.9)

for all b + u ∈ Rm such that X̂(b + u) 6= ∅. Choosing any x̂ ∈ X̂(b + u) and
letting Âx̂ = b + u, it holds that F (b + u) ≤ ĉT x̂. With (4.9), we obtain

(Âx̂)Ty∗ = (b + u)Ty∗ ≤ F (b + u)− F (b) + bTy∗ ≤ ĉT x̂− F (b) + bTy∗

which is true for all x̂ ≥ 0. From this, we can extract that

(ÂTy∗ − ĉ)T x̂ ≤ bTy∗ − F (b) ∀ x̂ ≥ 0,

and it follows that ÂTy∗ = ĉT . Therefore, y∗ is a dual feasible solution.
Furthermore, if x̂ = 0, we obtain F (b) ≤ bTy∗. However, due to weak
duality, every dual feasible solution ȳ∗ must satisfy bT ȳ∗ ≤ F (b) ≤ bTy∗.
This shows that y∗ ∈ Y ∗(b).

In the literature, one can find two approaches of defining shadow prices.
One is using the directional derivative of function F and has been applied
in Akgül’s paper about shadow prices in linear programming [1]. The other
approach is defining them as the optimal solution of the dual problem [19]. In
the following, we will present both approaches and proof their equivalence.
Note that we will reformulate Akgül’s definition according to the problem
type considered in this thesis.

Definition 4.5: (Shadow price, Akgül [1])
Let ei be the i-th unit vector. The positive shadow price of the i-th constraint
is defined by

p+
i := DeiF (b) ∀i

and accordingly, its negative shadow price is defined by

p−i := −D(−ei)F (b) ∀i.
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Let u ∈ Rm
+ , then we define the positive and negative shadow price for a

combination of several constraints i by

p+
u := DuF (b)

and
p−u := −D(−u)F (b).

In order to obtain a positive value for p−i , D(−ei)F (b) is multiplied by −1.

The positive shadow price of the i-th constraint represents the rate of
change in F for a marginal increase in bi and similarly, the negative shadow
price is showing the rate of change in F for a marginal decrease in bi. In the
context of conservation planning, those shadow prices describe the marginal
costs of increasing or decreasing the target for a certain feature. Addition-
ally, pu describes the change of F by increasing or decreasing a ’package’ of
constraints, as decision makers may be interested in how much a combination
of several targets might influence total cost.

Remark 4.3: If u ∈ Rm, as in Akgül [1], it may happen that some elements
of u are positive and some negative. In this case, the interpretation of positive
and negative shadow prices with an increase or decrease in the right-hand
side would not make sense anymore. After all, even the positive shadow
price p+

u could take negative values and analogously, −p−u can be positive.
Example 4.2 below, shows such a case. In this regard, it is better to restrain
the vector so that u ∈ Rm

+ . Then, the shadow prices of any type will always
take positive values, since F is monotonically increasing. In this thesis, we
will not use Akgül’s definition but another one which will be given directly.

The definition given in 4.5, refers only to LP in canonical form where
prices are always considered having a non-negative value. Having a look at
the objective function of the dual problem (4.4), one can interpret the dual
variable y as an indicator of how ’important’ the respective constraint i is
for the optimal value [19]. Therefore, we can give an alternative definition
for shadow prices using dual variables.

Definition 4.6: (Shadow price, dual variable [19])
Consider the dual linear optimization problem from Definition 4.2. We define
the shadow price of the i-th constraint as the optimal solution of the DLP

pi := y∗i ∀i,
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and similarly the shadow price of a combination of several constraints as

pu := uTy∗,

with u ∈ Rm.

Here, a distinction between positive and negative shadow prices would
also be possible for the perturbation of a single constraint. Depending on if
there is either an increase or decrease in the value of bi, we would call the
corresponding y∗i the positive or negative shadow price. Let us now poof the
equivalence of the two shadow price definitions 4.5 and 4.6.

Corollary 4.2: Let u ∈ Rm. Then,

DuF (b) = uTy∗.

Proof: Consider Definitions 4.5 and 4.6. Let x∗ be the optimal solution of
the primal and y∗ the optimal solution of the corresponding dual problem.
Thus,

F (b) = cTx∗.

Furthermore, let ε > 0 be small enough so that y∗ stays optimal. Then,

DuF (b) = lim
ε→0+

F (b + εu)− F (b)

ε

(4.8)
= lim

ε→0+

(b + εu)Ty∗ − cTx∗

ε

= lim
ε→0+

bTy∗ + εuTy∗ − cTx∗

ε

(4.8)
= lim

ε→0+

cTx∗ + εuTy∗ − cTx∗

ε

= lim
ε→0+

εuTy∗

ε

= uTy∗.

Particularly, with u := ei, we obtain the shadow price of a single constraint

DeiF (b) = eT
i y∗ = y∗i .
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This proves that both approaches, defining shadow prices as the directional
derivative of F (b) and as the optimal dual solution of the same underlying
optimization problem, are equivalent.

Corollary 4.3: According to Gal [10, p. 61], it holds that in case an optimal
solution is not primal degenerate

y∗i = p+
i = p−i ∀ i.

If we already solved a LP with the simplex algorithm as presented in
Chapter 3.2, we can easily extract the shadow prices from the final optimal
tableau, as the following example shows.

Example 4.1: (Shadow prices from the simplex tableau)
Consider the final optimal simplex tableau in Table 8. The shadow prices
can be found in the second row as the cost coefficients of the slack variables,
i.e. y∗1 = (0, 75)T . Since the optimal solution of the tableau is degenerate,
there are multiple shadow prices. Another one can be extracted from Table
9, i.e. y∗2 = (93.75, 75)T .

Example 4.2: (’Package’ shadow price)
Consider the relaxed optimization problem from Example 2.3, with a new
vector of targets b := (2, 7)T . Even though we changed the RHS, the optimal
dual solution y∗ = (0, 75)T and the optimal objective function value z∗ =
F (b) = $475 stay the same. Define uT := (1,−2). Then,

p+
u = DuF (b) = D(

1
−2

)F
((

2
7

))
= uTy∗ = (1,−2) ·

(
0
75

)
= −150

This is an example for a positive package shadow price taking a negative
value. The interpretation of p+

u = −150 is that if b gets perturbed by a
marginal factor ε > 0, the optimal objective function value will change by
the amount of ε · (−150). Let ε := 0.5. Then, the difference between the
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optimal objective function values is

∆z∗ = F (b + εu)− F (b)

= F

((
2.5
6

))
− F

((
2
7

))
= 400− 475

= εuTy∗

= 0.5 · (−150)

= −75

As in Definition 4.5, changes in the objective function value caused by
the variation of the RHS, can only be described by y∗, if the perturbation is
small enough, i.e. marginal. Even though geometrically, a small change in b
generates a shift of x∗, the optimal solution remains being at the intersection
of the same restricting lines. This means that the basic variables remain, but
they take different values. If the perturbation is too big, the composition of
the basic variables changes and with them the dual optimum. This may
happen even with a unit change of the RHS. Therefore, perturbations which
are not marginal cannot be described by the previously calculated shadow
prices anymore. This is a very important fact, since handling shadow prices
incautiously can lead to wrong results and conclusions. The example below
illustrates this observation.

Example 4.3: (Shadow price)
Consider the relaxed version of the optimization problem (2.17) from Chapter
2, with xi ∈ [0, 1] ∀i. The optimal solution is

x∗ = (1, 0.25, 0)T ,

with total cost z∗ = $475. For the dual optimum, we obtain

y∗ = (0, 75)T

as shadow prices for species 1 and 2 respectively. For simplicity, let us con-
sider only positive perturbations of the RHS. The value y∗2 = 75 tells us that
for marginal changes ε > 0 in b2, total cost increase by the amount of ε · y∗2.
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If we increase the target for species 2 by one unit, i.e. b
′
2 = 8, the new

optimal solution is
x∗
′
= (1, 0.5, 0)T ,

with z∗
′

= $550. The basis variables did not change, only the value of x∗2
increased by 0.25, which means that the change in the optimal objective
function value

∆z∗ = $550− $475 = $75

can be described by 1 · y∗2 = $75.

However, if we choose b
′′
2 = 11, total cost are z∗

′′
= $900. Thus,

∆z∗ = $900− $475 = $425,

which is not equal to 4 · $75 = $300.

This result can be explained by a change in the basis. In this case,
the perturbation of ε = 4 was not marginal anymore and generated a new
combination of the basis variables. If this happens, y∗2 = $75 can no longer
be used to describe the change in z∗.

As the example shows, there is a certain range for each shadow price
in which it is valid and the basis would not change. These ranges can be
calculated using linear parametric optimization, the topic of which will be
covered in the following section.

4.1.2 Linear Parametric Optimization

In the previous section, we analysed, how marginal perturbations of the
RHS of an LP influence the optimal objective function value. In practice,
conservation planners are interested in bigger target variations, but this could
lead to a change in the basis of an optimal simplex tableau.

Graphically, this means that for marginal perturbations, the optimal
point changes but stays at the vertex of the same restricting lines. For bigger
perturbations, the lines of intersection can change. Therefore, the difference
in total cost caused by a non-marginal perturbation cannot be described by
the shadow prices of the initial solution anymore. In this case, we can use lin-
ear parametric optimization techniques in order to determine the optimality
ranges of a solution x∗(t) for different choices of a parameter t.
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The explanations in this section are all based on Chapter 2.2 of Nickel,
Stein and Waldmann 2011 [19]. As previously, we assume that all primal
and dual optimal solutions are non-degenerate. Let us now give some basic
definitions first.

Definition 4.7: (Perturbation of the right-hand side)
Let t ∈ T ⊆ R and β ∈ Rm. Furthermore, let b ∈ Rm be the RHS of a LP.
Then, we define the perturbation of b by a parameter t as

b(t) := b + tβ.

In the following, we define w.l.o.g. that β := ei, where ei is the i-th unit
vector.

Definition 4.8: (Primal linear parametric optimization problem)
Let t ∈ T . The parametric formulation of the primal linear optimization
problem (4.1) is

(Pt) min
x(t)

cTx(t)

s.t. Ax(t) ≥ b(t) (4.10)

x(t) ≥ 0.

According to this, we can define the set of primal feasible parametric
solutions by

X(b(t)) := {x(t) ∈ Rn |Ax(t) ≥ b(t), x(t) ≥ 0},

the optimal primal parametric objective function value by

F (b(t)) := {cTx(t) |x(t) ∈ X(b(t))}

and the set of primal optimal parametric solutions by

X∗(b(t)) := {x(t) ∈ X(b(t)) | cTx(t) = F (b(t))}.

Geometrically, a change in t causes a parallel shift of the i-th restricting
line (depending on the choice of β). In Figure 7, it can be seen that for t = 0
the set of feasible solutions X(b(t)) equals the set X defined in Equation
(4.2). The point on the right-hand side marks the optimal solution. If we
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choose t < 0, the i-th restricting line moves to the lower left (dashed line).
In this case, the basic solution changes because the new optimal point is the
vertex of the i-th constraint and another line. This shift also changes the set
of feasible solutions X(b(t)). For big values of t, it may even happen that
X(b(t)) = ∅, as it is the case in Figure 7 for t > 0.

Figure 7: Effects of parameter t on the i-th restricting line [19].

The example above shows that there exist different optimality ranges for
which an optimal solution has a fixed basis. The aim is now to identify these
intervals of t and their corresponding sets of optimal solutions.

For this purpose, we add the vector β as an additional column to the
initial simplex tableau (see Table 13). It is not going to influence the pivoting
in any way, but at each pivot step it will be transformed by the same rules
as the rest of the tableau.

x(t) x̃(t)
z −c c̃ 0 0
x̃ −A I −b −β

Table 13: Initial dual parametric simplex tableau.

After solving this tableau, we obtain a basis solution x(t) = x+tβ
′
, where

β
′

is the transformed initial β. Let B be the corresponding basis. The point
x(t) is not necessarily primal feasible for all choices of t, since their might
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exist a j ∈ B so that xj(t) < 0. Therefore, we have to analyse for which
values of t it holds that xj(t) ≥ 0 for all j ∈ B.

Provided that this is the case for t∗ ∈ [a, b], we obtain the optimal so-
lutions x∗(t∗), which do all have the same basis. Note that for t∗ = a and
t∗ = b, the optimal solution is primal degenerate. For t ∈ T\[a, b], the cor-
responding tableau is primal infeasible but dual feasible. For values t from
the edge of an optimality range, it is thus necessary, to carry out additional
pivot steps, until the tableau is primal and dual feasible again. Thereby, we
obtain new solutions x

′
(t) (with a new basis), for which we can determine

the respective optimality range again. This procedure is repeated, until all
optimal solutions have been found for all t ∈ T .

An illustrative example of the method can be found in [19, p. 73 ff.].

4.1.3 Shadow Prices under Degeneracy

In Section 3.2.2, we already explained primal degeneracy. Here, we are going
to focus on its effects on shadow prices. In doing so, we will define the
’true’ shadow price and give some recommendations for further references
that cover this subject.

As we have seen previously, degeneracy causes multiple dual optimal so-
lutions, i.e. there exist more than one shadow price for a primal optimal
solution. An example of the consequences can be seen in Figure 8. The
considered maximization problem is restrained by three less than or equal
constraints c1, c2 and c3 (black lines). The optimum is denoted by P1. It can
be seen that the solution is degenerate, since one of the constraints c2 or c3

is redundant.

Let us assume that we obtained the shadow price by defining P1 as the
intersection of constraints c1 and c2. A decrease in the RHS of c2, leads to a
left shift of the respective line (green line). The new optimum P2 can also be
defined by c1 and c2 which means it has the same basis, and the change in
the objective function value can be described by the obtained shadow price.

However, if we increase the RHS of c2, this causes a shift to the right
(blue line). The new optimum P3 can only be defined by constraints c1 and
c3. In this case, we cannot use the assumed shadow price, but the shadow
price we would have obtained by defining P1 through constraints c1 and c3.
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Figure 8: Example of the effect of degeneracy on shadow prices.

This small example shows that under degeneracy, the shadow price of a
constraint is not unique but rather ’two-sided’ (one for an increase and one
for a decrease in the RHS). Looking back at Akgül’s shadow price definition
in Definition 4.5, we already characterized it to be two-sided, by defining
a positive and a negative shadow price. In Corollary 4.3, we furthermore
stated, that in the non-degenerate case, the shadow price is unique, i.e. both
sides are equal.

Thus, under degeneracy the question arises, which shadow price should
be used for sensitivity analysis, i.e. which is the ’true’ shadow price?

Definition 4.9: (True shadow price, [14])
Consider a minimization problem with less than or equal constraints and

let k be the number of shadow prices y∗i of the i-th constraint of a primal
degenerate optimal solution. Then, we define the true shadow price by

p+
i := max

k
{y∗i,k},

for an increase in the RHS and

p−i := min
k
{y∗i,k},

for a decrease in the RHS.
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Note that this definition has been adjusted to the problem type considered
in this thesis. The definition given, for example, by Ho [14], Akgül [1] and
Aucamp and Steinberg [2], bases on a maximization problem and is given by

p̃+
i := min

k
{ỹ∗i,k}

and
p̃−i := max

k
{ỹ∗i,k},

with ỹ∗i,k being the shadow prices of the i-th constraint, obtained by solving
a maximization problem.

Proposition 4.1: For a minimization problem with less than or equal con-
straints, both definitions are equivalent.

Proof: Consider a minimization problem with less than or equal constraints.
From min cTx = −max−cTx, it follows that

−y∗i,k ⇔ ỹ∗i,k ∀i, k

and furthermore, ỹ∗i,k ≤ 0 for all i, k. Thus, it also holds that p̃+
i , p̃

−
i ≤ 0, for

all i. Therefore,

p̃+
i = min

k
{ỹ∗i,k} ⇔ −p̃+

i = −min
k
{−y∗i,k} = max

k
{y∗i,k} = p+

i

and analogously,

p̃−i = max
k
{ỹ∗i,k} ⇔ −p̃−i = −max

k
{−y∗i,k} = min

k
{y∗i,k} = p+

i ,

which proves the assertion.

Let us now give a small example of true shadow prices.

Example 4.4: (True shadow price)
For the optimal solution x∗ = (1, 0.25, 0)T of the relaxed problem (2.17), we
obtain the following true shadow prices:

p+
1 = 93.75, p−1 = 0,

p+
2 = 75 and p−2 = 75.
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Table 14, validates these results assuming a one by one perturbation of ε :=
±0.5 of each constraint. Remember, the initial RHS is b = (3, 7)T and that
we intent to show that

∆z∗ = F (b + εei)− F (b) = ε · p±i .

b′ ∆z∗ ε · p±i
(3.5, 7)T 521.875− 475 = 46.875 0.5 · 93.75 = 46.875
(2.5, 7)T 475− 475 = 0 −0.5 · 0 = 0
(3, 7.5)T 512.5− 475 = 37.5 0.5 · 75 = 37.5
(3, 6.5)T 437.5− 475 = −37.5 −0.5 · 75 = −37.5

Table 14: Validation of the true shadow price example.

In order to calculate all shadow prices from an optimal degenerate sim-
plex tableau, Aucamp and Steinberg [2] developed the concept of the ’valid
degenerate pivot row’ (VDPR). A revised definition and an example can be
found in Akgül [1, p. 429 ff.] and in Gal [10, p. 63].

Knolmayer developed an algorithm which analyses the algebraic “signs
of the coefficients in the degenerate rows of the optimal simplex tableaus.
[...][It] stops generating additional tableaus as soon as all the information
required is obtained; typically only a fraction of all optimal tableaus has to
be considered” [16, p. 14]. More detailed information about this method
along with some examples can be found in the respective journal article [16]
and in [10].

Having now covered the topic of sensitivity analysis of LPs, we will con-
tinue with the sensitivity analysis of ILPs in the following section.

4.2 Integer Linear Optimization Problems

Sensitivity Analysis for ILPs is a lot more challenging than for LPs, tak-
ing into account the fact that even solving the optimization problem with
only one fixed value of the RHS is NP-hard. In this section, we will give a
brief overview over methods available along with some references for further
information.
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In terms of the complexity of implementation, the simplest approach of
sensitivity analysis is resolving the ILP with different values for the RHS.
We will use this approach later on in Chapter 5. However, this method can
be very time consuming for large problem sizes.

Another approach is using the so-called value function, as we defined it
in (4.3), adjusted to the ILP

FILP (b) := min{cTx |Ax + Ix̃ = b, x ∈ {0, 1}, x̃ ≥ 0},

with I ∈ Rm×m being the unit matrix and x̃ ∈ Rm
+ the slack variables. Note

that this is a mixed integer linear program (MILP).

According to Guzelsoy and Ralphs [13, p. 2], a dual function GILP (b), is
a function that bounds the value function over the set Rm, that is,

GILP (b) ≤ FILP (b) ∀ b ∈ Rm.

A feasible dual function can be easily obtained for any MILP. Consider, for
example, the value function of the LP relaxation of the primal problem:

FLP (b) ≤ FILP (b) ∀ b ∈ Rm,

taking into account a minimization problem.

The aim is to construct a dual function GILP , which closely approximates
the primal value function FILP , i.e. at a point b̄ ∈ Rm its value should be
as close as possible to FILP (b̄). We can then use the dual value function
in order to obtain lower and upper bounds to the primal objective function
value for a modification of the RHS. In case the upper bound equals the lower
bound for a fixed b̄, we can deduce that FILP (b̄) = GILP (b̄) [12, p. 132].

There are different methods of constructing a dual value function, using
for example a cutting plane method, lagrangian relaxation or branch and
bound. Guzelsoy and Ralphs give an overview of various approaches in their
paper about integer programming duality [13]. More detailed descriptions
can be found in Guzelsoys’ dissertation [12].

However, both authors conclude that it “has so far been difficult to repli-
cate for integer programming the functional and efficient implementations of
dual methods we have become so accustomed to in the linear programming
case” [13, p. 11]. Nevertheless, they also point out that with advances in
computing, better implementations might be possible.
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In 1988, Kim and Cho proposed “a new concept of shadow price in integer
programming with rich economic interpretation which is useful in manage-
ment decision” [15]. They called it the ’average shadow price’, which is based
on average profitability instead of duality theory or marginal analysis.

The main aspects of their paper [15] will be summarized in the following.
The authors consider a perturbation function of a maximization ILP

zk(w) := max{cTx | ajx ≤ bj(j 6= k), akx ≤ bk + w,x ∈ Zn
+},

where aj denotes the j-th row of matrix A. This function describes the
objective function value, if the k-th restriction is perturbed by an amount w.

Definition 4.10: (Average shadow price, [15])
The average shadow price of the k-th restriction is

yk := inf{p ≥ 0 | zk(w)− zk(0)− pw ≤ 0 ∀w ≥ 0}.

According to [15, p. 330], the above definition is equivalent to

yk = sup
w>0
{(zk(w)− zk(0))/w}.

Here, (zk(w) − zk(0))/w is the average additional profit for a perturbation
w of the k-th constraint. Another characteristic of yk is that “the average
shadow price reduces to the marginal shadow price if a convex programming
problem is considered” [15, p. 331].

In order to obtain yk, it is necessary to solve a sequence of ILPs. Depend-
ing on the problem size, this can be very time consuming. Thus, the authors
provide a procedure of finding upper and lower bounds to yk, by solving only
one more ILP. For this purpose, they define the so-called critical values for
function z.

Definition 4.11: (Critical value, [15])
A real number w is called a critical value for the function z, if z(w′) < z(w)
for all w′ < w. Let C be the set of all positive critical values.

Lemma 4.3: If C is empty, yk = 0. Otherwise,

yk = max
w∈C
{(z(w)− z(0))/w}. (4.11)
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The proof of this lemma can be found in [15, p. 332].

The largest value that solves (4.11), is called the steepest critical value
and is denoted by w∗. The following theorem defines an upper and lower
bound of the average shadow price.

Theorem 4.3: (Upper and lower bound of yk, [15])
Let C 6= ∅ and let z̄ be the perturbation function of the LP relaxation of the
initial programming problem. For any w with 0 ≤ w ≤ w∗, define the lower
bound of yk by

yl := (z(w)− z(0))/w

and the upper bound by

yu1 := (z̄(w)− z(0))/w.

Then, yk is in [yl, yu1 ].

The proof of this theorem is given in [15, p. 332].

According to the authors, “the Lagrangian relaxation provides a better
upper bound for yk than the LP relaxation” [15, p. 333]. Analogously to the
theorem above, we can therefore define another upper bound by

yu2 := (zL(w)− z(0))/w,

with zL being the perturbation function of the Lagrangian relaxation of the
initial optimization problem. With this, we get yk ∈ [yl, yu2 ] ⊂ [yl, yu1 ].

Assuming that c is an integer vector, a positive value w ≤ w∗ can be
found by solving the problem

CP := min{akx− bk | cTx ≥ z(0) + 1, ajx ≤ bj (j 6= k),x ∈ Zn
+}.

If the initial problem is a 0-1 optimization problem, the problem CP can
be solved easily using information saved during the resolution of the initial
problem [15, p. 333].

In the final part of their paper, Kim and Cho present a method that
improves the upper bound by solving the LP or Lagrangian relaxation of the
following profit maximization problem

M(p) := max{cTx− p(akx− bk) | akx ≥ bk + w0, ajx ≤ bj (j 6= k),x ∈ Zn
+},
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with w0 ≤ w∗ being a positive critical value. Furthermore, they provide an
algorithm which updates the lower bound, until it converges to yk by solving
a sequence of ILPs.

Note that we can easily transform the minimum set coverage problem into
a maximization problem, analogously to the way it has been done with the
land allocation problem in Equation (3.1). Thus, we can also use the results
given above.

However, a major drawback of this method concerning the sensitivity
analysis of conservation prioritization problems is, that at least two ILPs have
to be solved directly. As mentioned before, this must not always be possible
for larger problems which is the main reason why there is no ILP feature
ranking for two of the problems considered in the next chapter. Additionally,
the smallest problem which we are going to examine, can be solved in a
very short time using direct resolution methods. Thus, it is not necessary to
implement the method described above, though it might be good for problems
that are still small enough to solve them directly but too large already to
conduct a sensitivity analysis by solving a sequence of ILPs.

Let us now apply the obtained results of the previous chapters in order
to answer the main research questions of this thesis.
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5 Application - Creating a Feature Ranking

In the introduction of this thesis we, formulated two central questions:

• Which features have the highest influence on the total cost of a reserve
system?

• How much must/can targets be changed in order to have a high impact
on already calculated total cost or none at all?

In this chapter, we seek to answer these questions for the minimum set cov-
erage problem. From Chapter 4 about sensitivity analysis, we know that for
linear programming problems such questions can be answered with the help
of shadow prices. Since shadow prices are not defined for ILPs, such as the
minimum set coverage problem, the question is now if we can use the shadow
prices of the land allocation problem, its relaxation, instead?

Mathematically, this is in general not possible because we assume that
an optimal solution of a continuous optimization problem is very close to an
optimal solution of its corresponding integer problem. In Chapter 6, we will
discuss this aspect in more detail. However, in the context of the minimum
set coverage problem, this assumption seems to work well as we will see
later. Therefore, we are going to use the shadow prices of the land allocation
problem as an approximate approach in order to answer the questions above
for the minimum set coverage problem.

In the following, we will introduce a methodology which creates a feature
ranking according to their influences on the total cost of the reserve system.
Furthermore, we will discuss some problems which can occur during this
process and give possible solutions. In the last part of this chapter, we
will apply the developed method to three real-world minimum set coverage
problems of different sizes and evaluate the obtained results.

5.1 Methodology

The shadow prices of the land allocation problem provide an indication of
how much the correspondent features influence the objective function value.
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Thus, the idea is to rank the features according to their shadow prices from
highly sensitive (high influence) to little sensitive (low influence).

In order to test the credibility of the result, we create another ranking
with Marxan results and - if possible - with the ILP solutions. Since we
cannot work with shadow prices for the latter two rankings, we proceed as
follows:

Algorithm 5.1: (Pseudocode of the ILP and Marxan ranking)

0. SET d := const.
SOLVE initial ILP, save baseline cost c0.

1. FOR j = 1, 2, ...,m iterations DO

1.1 Decrease j-th target by amount d.

1.2 SOLVE ILP, save cost cj.

1.3 Calculate ∆c := c0 − cj.

2. Create a ranking of all features according to their respective ∆c.

3. REPEAT for new d.

The R programming code of this algorithm can be found on the CD
enclosed with this thesis.

The value of constant d cannot be marginal, as it would be needed for
actual shadow prices because then, we would not see any effect in the ob-
jective function value. As a matter of fact, the perturbation for the Marxan
ranking must be quite big. The reason for this is the so-called Marxan error.

In Figure 9, one can see that the objective function values of solutions
provided by Marxan lie within a range around the actual optimum cILP0 . If we
chose a small perturbation, whose corresponding optimal objective function
value cILPj is too close to cILP0 , Marxan might provide a solution with total
cost cMj > cM0 , even though cILPj < cILP0 . Thus, the constant d must be
chosen big enough to avoid this case (see Figure 10).
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Figure 9: If the perturbation is too small, cM0 lies within the Marxan solution
range of cMj . Thus, possible total cost cMj provided by Marxan could be
greater than cILP0 although cILPj is smaller than cILP0 .

Figure 10: If the perturbation is big enough, cM0 lies outside the Marxan
solution range of cMj .

Furthermore, the targets must always be changed by absolute numbers,
i.e. d cannot be a percentage value. Otherwise, the results may not be as
expected, as the following example shows.

Example 5.1: (Percentage vs. absolute number perturbation)
For one of the data sets which we will introduce later, we noticed for two
features, say species 1 and species 2, that for a percentage perturbation of
their targets, the difference in total cost was higher for the least sensitive
species 2 than for the most sensitive species 1.

The reason for this was, that decreasing the target for species 1 by 0.05%,
meant reducing the total amount of individuals by approx. 50, whereas for
species 2, 0.05% already corresponded to about 1657 individuals. So even
though species 2 was less sensitive than species 1 (i.e. the effect on total
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cost should have been lower than for species 1), the high amount of reduced
individuals compensated this fact and made the change in total cost higher.

This effect did not occur when the targets were decreased by an absolute
number of individuals.

It must also be taken into account that for the ILP and the Marxan
ranking, the range of d depends on the lowest target value. In our analysis,
we always set the target to a certain percentage of the total representation
of a feature. Thus, we sought to protect e.g. 30% of all individuals of
each species. If there is for example a very common species, the target is
respectively high, and can accordingly be decreased by a high amount of
individuals. But this amount must not exceed the target value of the rarest
species in order to avoid negative targets.

As discussed in Chapter 4, shadow prices are only valid for marginal
changes in the RHS. This means that in terms of the necessarily high per-
turbations for the Marxan ranking, we have to show that the current shadow
price ranking is stable towards big changes in the RHS. For this purpose, we
conduct a stability check for the dual variables. The programming code of
the following algorithm, written in R, is saved on the CD that is enclosed
with this thesis.

Algorithm 5.2: (Pseudocode of the duals stability check)

0. SET d := const.
SOLVE initial LP, create feature ranking.

1. FOR j = 1, 2, ...,m iterations DO

1.1 Decrease j-th target by amount d.

1.2 SOLVE LP, save shadow price sj.

2. Create a ranking of all features according to their respective sj.

3. REPEAT for new d.

If there are no major changes in the shadow price feature rankings, we can
assume the LP, ILP and Marxan rankings to be comparable. In more detail,
this means that the shadow prices react more or less evenly towards changes
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in the targets, i.e. there is no feature that reacts for example alternately
very sensitive, not sensitive at all and then sensitive again for different target
ranges.

Regarding the Marxan ranking, it must also be taken into account that for
rare species, the perturbations might have to be so big that the new targets
are close to zero. In this case, it can happen that the simplex algorithm
returns zero shadow prices. For the duals stability check this means that
a reasonable ranking of the duals would not be possible anymore. Due to
the Marxan error, the big perturbations can thus be seen like a ’shift’ of the
target changes for the duals stability check in order to make the algorithm
react as sensible as the simplex.

5.2 Application

In this section, we will apply the above presented methodology to three real-
world conservation prioritization problems. Table 15 gives an overview of
the main information about the Marine Protected Area (MPA), the Tridacna
Crocea (TCR) and the Tasmania (TAS) data set. The complete underlying
data of this chapter can be found on the CD enclosed with this thesis.

Data set MPA TCR TAS

Planning units 100 1435 1723
Features 10 22 17
Solved with LPSolve ILP X
Solved with LPSolve LP X X X
Solved with Marxan X X X

Table 15: Data set overview.

For the MPA data set, it is possible to solve the corresponding minimum
set coverage problem directly. However, the larger data sets TCR and TAS
are already too big to solve them with exact resolution methods in reasonable
computing time.

For all data sets, we ran the land allocation problem and for the MPA data
set also the minimum set coverage problem on the open source solver LPSolve
[4]. Marxan has been used as a heuristic approach for the resolution of the
minimum set coverage problems. Here, we set the calibration parameters to
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0 for the boundary length (because we did not take it into account) and to
10 for the species penalty factor (see [11, p. 98 ff.]), so that all the targets
would be met in the reserve generated.

To be able to work with great perturbations for the Marxan ranking, it
was necessary to choose relatively high targets. The target values for all
three data sets can be found in Table 16.

Feature ID MPA 60% TCR 67% TAS 57%

1 802.2 12184.10921
2 753.6 11708.66411
3 729 11155.89499
4 834.6 11167.38754
5 873 10346.41173
6 624 12192.70254
7 952.2 12962.71452
8 774 13014.19448
9 865.2 12789.3767

10 1122 10540.95469 629906.7359
11 11693.93743 11256.58015
12 13142.20386 16923.62827
13 12918.15188 21782.762
14 14163.30853 18770.55671
15 13323.59393 44674.92819
16 10844.97206 34914.82193
17 12235.03702 50012.32163
18 10053.42712 71678.4257
19 12448.86853 59811.02374
20 11016.33255 39963.21131
21 11491.97427 19070.09415
22 11675.85018 25930.24384
23 27739.2742
24 25427.29452
25 27009.54411
26 10170.99598

Table 16: Targets of the MPA, TCR and TAS data set. The percentage
values state the share of the total amount of individuals.

Let us now have a closer look at the results of the individual data sets.
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Marine Protected Area (MPA) Data Set

The MPA data set is the smallest of the three considered data sets in this
thesis. It consists of 100 planning units (sites) and considers 10 species
(features). As shown in Table 15, we solved the corresponding ILP and LP
using LPSolve and Marxan.

The results of the different algorithms are given in the solution table of
the Marxan online app [28] in Figure 11. LPSolve calculated total cost of
$18480, selecting 48 planning units for the ILP and $17719.87, selecting 52
planning units for the LP, whereas the Marxan best solution was $18514, with
47 planning units selected for conservation. The LP solution is the cheapest
because the algorithm allows the variables to take non-integer values which
means that it is also possible to conserve only a fraction of a site.

Figure 11: MPA solution table of the Marxan online app [28].

Figures 12 - 14 show the conservation maps with the selected planning
units marked in green or blue. It can be seen that all three approaches
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chose similar planning units for preservation. The different colour shades in
Figure 13, indicate the amount of the corresponding planning unit selected
for protection (dark blue indicates that it has been selected entirely).

Figure 12: MPA
ILP map [28].

Figure 13: MPA
LP map [28].

Figure 14: MPA
Marxan best solu-
tion map [28].

The shadow price ranking for this data set is shown in column “LP 0” of
Figure 17 (see page 73). We can see that according to the ranking, species
5, 6 and 4 are the most sensible. If we decrease their targets, they will have
the highest influence on the total cost of the reserve system.

The columns “LP -150”, “LP -200” and “LP -250” show the results of
the duals stability check. The numbers give the amount of the target per-
turbation, e.g. in column “LP -150”, all targets have been decreased one by
one by 150 units. It can be seen that there are only slight changes in the
ranking and that also species 9 happens to be quite sensitive. The ILP and
Marxan rankings (columns “ILP -200, -250, -300” and “Marxan -200, -400,
-600”) give similar results. This means that for the MPA data set shadow
prices can be used for the creation of a feature ranking.

Tridacna Crocea (TCR) Data Set

The TCR data set considers 22 features in 1435 sites. Total cost of the
optimal LP solution is $1,534,888, whereas Marxan with 100 runs and 10
million iterations calculated total cost of $1,578,492.38. According to the
shadow price ranking (“LP 0”) in Figure 18 on page 74, features 22, 20, 17
and 1 are the most sensitive and species 19, 9 and 11 the least sensitive.
However, the duals stability check (“LP -300, -600, -900”) shows that the
shadow price for feature 17 (marked blue) is not stable. This explains its
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different position in the Marxan ranking.

Furthermore, the “NA”-value next to feature 11 in the last column means
that due to the Marxan error, the difference in total cost was negative. This
makes it impossible to rank this particular feature, though it is likely to be
low sensitive with the two Marxan solutions appearing to be so ’close’ to
each other.

In summary, one can say that for features with stable duals the LP solver
and Marxan provide similar rankings.

Tasmania (TAS) Data Set

By taking into account 1723 planning units and 17 features, the Tasmania
(TAS) data set is the largest considered in this thesis. Solving it with a 57%
target, gives total cost of $8,895,725,027 for the LP and $9,307,419,702 for
the ILP solved with Marxan. The respective map of the selected planning
units can be seen in Figures 15 and 16.

Figure 15: TAS LP map [28]. Figure 16: TAS Marxan best
solution map [28].

The rankings in Figure 19 at the end of this chapter show that the dual
variables of this data set are extremely stable (cf. columns “LP 0, -300, -
600, -900”). Due to this, features 21, 26 and 23 are the most sensitive in all
rankings and even their positions do not change much. Features 22, 17 and
10 appear to be the least sensitive, which holds for the shadow price ranking
as well as the Marxan rankings.
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The zeros next to features 20 and 22 in column “LP -5000” signify that
in their cases, the shadow price is 0 which means that both of them hold the
same position within the ranking.

With the above considerations, we answered the first question stated at
the beginning of this chapter: by using shadow prices we can create a feature
ranking according to their influence on total cost. The second question, how-
ever, can only be answered for the non-integer problem, the land allocation
problem.

Here, the optimality ranges of solutions x∗(t), as we introduced them
in Chapter 4.1.2, also indicate the optimality ranges of the corresponding
dual variables. For many problem solvers, such as LPSolve, there exists a
command which displays the shadow prices along with their ranges.

From Chapter 4.1.1, we know that we can calculate the change in total
cost by multiplying the change in a feature’s target by its corresponding
shadow price. Thus, if we now wanted to know how much we could change
a target without influencing total cost, the corresponding feature’s shadow
price would have to be zero and the perturbation would have to be within
the optimality range of the dual solution.

For the ILP (the minimum set coverage problem), shadow prices can
indeed be used as an estimation of the feature’s sensitivity, but their actual
values are of no use when it comes to calculating the difference in total cost
for changes in the targets. The reason for this is, that the results would be
too inaccurate, since the shadow price values are only correct for the relaxed
problem.

A more detailed discussion of the results of this section will be part of
the subject of the following chapter.
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6 Discussion and Conclusion

In this thesis, we sought to develop a method which describes the influence
of features on total cost of a reserve system with respect to changes in their
targets. In this context, we aimed to create a feature ranking and find out
how much targets can be manipulated so that total cost would remain the
same or change drastically.

Since there is a variety of problem formulations available (see Chapter
2, we focused only on the minimum set coverage problem and its relaxation,
the land allocation problem. In Chapter 3, we pointed out that large ILPs
cannot be solved by direct resolution methods, such as branch and bound, in
reasonable computation time. In this case, heuristic methods like simulated
annealing can be used. The LP, however, can be solved quickly by applying
the simplex algorithm.

For LPs, the impact of changes in the RHS (targets) on the objective
function value (total cost) can be described by shadow prices. In Chapter 4,
we presented two different shadow price definitions and proved their equiv-
alence. We also found out that under degeneracy, the shadow price is not
unique and we defined the two-sided ’true’ shadow price. In the last part
of this chapter, different approaches of conducting a sensitivity analysis for
ILPs have been presented.

The results of the previously mentioned chapters have been used to create
a feature ranking based on their influence on total conservation cost. The
underlying methodology uses the shadow prices of the LP relaxation of the
minimum set coverage problem. The obtained ranking is then validated by
two other feature rankings, created with simulated annealing (Marxan) and
- if possible - by applying branch and bound to a sequence of ILPs. Here,
the aim was to find out if shadow prices can be used as an indicator for the
sensitivity of the features of an ILP.

In Chapter 5, we applied this method to three real-world conservation
prioritization problems. We observed that for stable shadow prices all three
rankings showed similar results for the most and least sensitive features for
all tested data sets.

If it is possible to solve an ILP relatively quick, the best way of creating a
feature ranking is probably applying one of the methods presented in Chapter
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4.2. Since this is not applicable for most of the problems considered in this
thesis, we used the relaxation (an LP) instead, assuming that their optimal
solutions are close to each other. But this assumption must be regarded with
caution, as the following example, communicated by A. Kripfganz, will show.

Example 6.1: (Distance between the optimal ILP and LP solution)
Consider the following optimization problem with k ∈ R.

max
x

x1 + kx2

s.t. x1 +(k + 1)x2 ≤ k + 1
x1 ≤ 1

2
k

Figures 20 and 21 show the graphical solutions for k = 1 and k = 3. In both
figures, the point P1 represents the integer and P2 the continuous solution.
It can be seen that for increasing values of k the LP solution recedes from
the ILP solution.

Figure 20: Graphical solution for k = 1. P1 is the ILP and P2 the LP
optimum.

Figure 21: Graphical solution for k = 3. P1 is the ILP and P2 the LP
optimum.



Discussion and Conclusion 78

This example demonstrates that LP and ILP solutions of the same under-
lying optimization problem do not necessarily have to be close to each other.
This means that in general, it is not possible to approximate an optimal ILP
solution by its relaxation. However, this approach seems to work quite well
in practice. This can be seen in Figures 12 and 13 for instance, which display
the conservation maps of the optimal ILP and LP solution of the MPA data
set. Many planning units chosen by both approaches are identical.

As we have seen in the TCR example, the quality of the shadow price
feature ranking depends on its stability. A ranking is understood to be stable,
if there is no major change in the ranking position of each dual, even though
we are considering higher than marginal perturbations. The validity range
of each shadow price can be obtained with the help of linear parametric
optimization, the topic of which we covered in Chapter 4.1.2. It is thus
recommendable, that a duals stability check (see Algorithm 5.2) is always
conducted in order to validate the credibility of feature rankings based on
shadow prices.

The subject of degeneracy and its effects on shadow prices also have an
influence on the ranking. Since the conservation prioritization problems con-
sidered in this thesis are usually overdetermined, degeneracy is likely to occur.
Yet, many problem solvers provide only one shadow price, even under degen-
eracy (e.g. LPSolve [4]). It would be necessary, to implement appropriate
methods that calculate the true shadow prices and create rankings according
to these. Nevertheless, we should first consider the question if the impact of
degeneracy on the ranking is high enough to falsify it. In this context, the
duals stability check might take away some of the uncertainties. In fact, for
the ranking itself, it is only the position in relation to other features that
matters and not the actual shadow price value.

Apart from the more technical aspects discussed above, the quality of the
ranking is also highly dependent on the underlying data, since “data inputs
into the problem are often imprecise” [18, p. 189]. Consider for example the
cost vector. “Although only a single cost can be defined for each planning
unit, this cost can be a composite of different measures, provided there is a
defensible basis with which to combine them. Costs of the same currency can
be combined (e.g. if both costs are monetary). Costs of a different currency
can not sensible be combined without using arbitrary weightings (e.g. if one
cost is monetary and one is social).” [11, p. 46]

Having this in mind, the interpretation of shadow prices in the context of
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conservation prioritization problems must be done carefully. The ranking is
based on the respective feature’s influence on total cost and in this regard, the
shadow prices are not meant to be ’price tags’ for the considered features.
Additionally, it is recommendable to always examine several of the most
sensitive features for target adjustments. Due to the fact that the ranking
bases on approximations, the existence of ’the’ most sensitive feature cannot
be guaranteed. Furthermore, the most sensitive features also tend to be the
rarest (e.g. species) and thus represent those which decision makers would
least like to compromise on [23]. The reason for this is that their ’share’ in
the costs of a planning unit is relatively high, compared to more common
features.

Consequently, one can draw the conclusion that shadow prices can indeed
be used as an indicator for the influence of a feature on the total cost of a
reserve system. A respective feature ranking is valid for both, ILPs like the
minimum set coverage problem and LPs, such as the land allocation problem.
For the latter, shadow prices even provide information about actual changes
in total cost, due to changes in the targets. However, they must be handled
carefully, especially regarding their interpretation as ’prices’.

The results of Chapter 5 validate this conclusion, though it would be
interesting to test the suggested methodology on other data sets with different
data structure. Additionally, further research is needed in order to expand
the method and make it applicable to more complex problem formulations.
Based on an increasing computational capacity, it might also be worthy to
develop better implementations of the ILP sensitivity analysis approaches,
in order to create more accurate ILP feature rankings.

An outlook on how the results of this thesis can be applied and some
more suggestions for further research will be given in the next chapter.
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7 Outlook

In the long term, it would be desirable to include feature rankings like the one
presented in this thesis into Marxan in order to provide an additional tool
for conservation planners, supporting them in compromising on the target
setting of conservation features. Since LPSolve is freely available and can
also be called from the R software environment, the solver is compatible
with Marxan and could easily be integrated into it.

As a ’by-product’ of this thesis, we observed that for the considered data
sets, many of the selected planning units by the LP solver and Marxan were
identical. For a run with a 30% target for each feature of the TAS data set
Marxan, selected for example 345 planning units for the ILP solution and
LPSolve 319 planning units for the LP solution, 230 of these planning units
were identical (see respective file on the CD). This comparison does not take
into account variable values. However, most variables of the LP solution had
the value 1. The reason for this is rather simple. In every iteration, the
simplex algorithm selects as high a share of the ’cheapest’ site containing the
desired feature as is needed to meet its target. If the target cannot be met
by protecting only one site, it selects the full planning unit and skips to the
next cheapest site. Thus, many of the variables take values at their upper
bound.

This fact can be used to improve the species penalty factor (SPF), Marxan
uses in order to make sure that most or all targets are met. The higher the
SPF, the more likely it is that the obtained solution meets all targets. Here,
we used by default a SPF of 10. More information about the SPF can be
found in [11].

Another idea which might improve Marxan results and uses the above
mentioned observation, is to provide simulated annealing with an optimal LP
solution as a starting point and run the algorithm with a low temperature.
If the ILP solution is close to the LP solution, Marxan would then be able
to detect it relatively fast.

The most recent accomplishments of the research referred to Marxan and
the ideas discussed in this chapter can be found on Matthew Watt’s GitHub
page [27].
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A Branch & Bound Flow Chart
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Figure 22: Modified flow chart of the branch and bound algorithm for mini-
mization problems from Domschke and Drexl 2005 [9].
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B Summary of the Dual Bounded Simplex

Algorithm

Consider the minimum set coverage problem

min{cTx | Ax ≥ b, 0 ≤ x ≤ u}.

Step 1 Initial problem formulation

Convert the given optimization problem to the form

−max{−cTx | −Ax ≤ −b, 0 ≤ x ≤ u}.

Step 2 Slack variables

Add slack variables to the constraints and the upper bound relations, so
that the optimization problem takes the form

−max{−cTx | −Ax + Ix̃ = −b, 0 ≤ x ≤ u, x̃ ≥ 0}

and x + x′ = u.

Set up the initial dual simplex tableau

x x̃
z −c c̃ 0
x̃ −A I b

Step 3 Optimality check

If

(i) −bj ≥ 0 ∀j,

(ii) ĉs ≤ 0 ∀s ∈ {1, ..., n+m} and

(iii) 0 ≤ xi ≤ ui ∀i

then, the current tableau is optimal, i.e. go to step 8. If at least one of the
conditions is not fulfilled, got to step 4.
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Step 4 Pivot element

Choose the row with the most negative bj, say the k-th. The pivot element
âkl is the one that fulfils

min

{
z − ĉs
−âks

}
∀s ∈ {1, ..., n+m}, âks < 0.

Step 5 Pivot step

Calculate the new values of the pivot row

â′ks :=
âks
âkl

and − b′k :=
−bk
âkl

and then those of the remaining rows

â′js := âjs + â′ks · (−âjl) and − b′j := −bj + (−b′k) · (−âjl) ∀j, j 6= k

so that â′kl = 1 and all other elements of the pivot column are zero.

Step 6 Boundary check

If all variables are within their bounds, go to step 3. If at least one vari-
able exceeds its upper bound, continue with step 7.

Step 7 Variable substitution

If a variable of the r-th row of the basis, say xp, exceeds its upper bound,

(i) change all signs of the r-th row, except of the factor ârp = 1,

(ii) replace the value of xp by x′p = up − xp in the RHS,

(iii) replace the lable of xp by x′p,

(iv) calculate z′ = z + cpup and

(v) change the sign of cp.

Go to step 3.
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Step 8 Optimal solution

In the final optimal tableau, the non-basis variables are zero and the basis
variables take the values of the RHS. Note that all complementary variables
have to be re-substituted by

xi = ui − x′i.

Stop.
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