187 research outputs found

    Fe-chitosan complexes for oxidative degradation of emerging contaminants in water: Structure, activity, and reaction mechanism

    Get PDF
    Versatile and ecofriendly methods to perform oxidations at near-neutral pH are of crucial importance for processes aimed at purifying water. Chitosan, a deacetylated form of chitin, is a promising starting material owing to its biocompatibility and ability to form stable films and complexes with metals. Here, we report a novel chitosan-based organometallic complex that was tested both as homogeneous and heterogeneous catalyst in the degradation of contaminants of emerging concern in water. The stoichiometry of the complex was experimentally verified with different metals, namely, Cu(II), Fe(III), Fe(II), Co(II), Pd(II), and Mn(II), and we identified the chitosan-Fe(III) complex as the most efficient catalyst. This complex effectively degraded phenol, triclosan, and 3-chlorophenol in the presence of hydrogen peroxide. A putative ferryl-mediated reaction mechanism is proposed based on experimental data, density functional theory calculations, and kinetic modeling. Finally, a film of the chitosan-Fe(III) complex was synthesized and proven a promising supported heterogeneous catalyst for water purification

    Mechanism of action of probiotics

    Get PDF
    The modern diet doesn't provide the required amount of beneficial bacteria. Maintenance of a proper microbial ecology in the host is the main criteria to be met for a healthy growth. Probiotics are one such alternative that are supplemented to the host where by and large species of Lactobacillus, Bifidobacterium and Saccharomyces are considered as main probiotics. The field of probiotics has made stupendous strides though there is no major break through in the identification of their mechanism of action. They exert their activity primarily by strengthening the intestinal barrier and immunomodulation. The main objective of the study was to provide a deep insight into the effect of probiotics against the diseases, their applications and proposed mechanism of action

    ENDOR Spectroscopy and DFT Calculations: Evidence for the Hydrogen-Bond Network Within α2 in the PCET of E. coli Ribonucleotide Reductase

    Get PDF
    Escherichia coli class I ribonucleotide reductase (RNR) catalyzes the conversion of nucleotides to deoxynucleotides and is composed of two subunits: α2 and β2. β2 contains a stable di-iron tyrosyl radical (Y[subscript 122]•) cofactor required to generate a thiyl radical (C[subscript 439]•) in α2 over a distance of 35 Å, which in turn initiates the chemistry of the reduction process. The radical transfer process is proposed to occur by proton-coupled electron transfer (PCET) via a specific pathway: Y[subscript 122] ⇆ W[subscript 48][?] ⇆ Y[subscript 356] in β2, across the subunit interface to Y[subscript 731] ⇆ Y[subscript 730] ⇆ C[subscript 439] in α2. Within α2 a colinear PCET model has been proposed. To obtain evidence for this model, 3-amino tyrosine (NH2Y) replaced Y[subscript 730] in α2, and this mutant was incubated with β2, cytidine 5′-diphosphate, and adenosine 5′-triphosphate to generate a NH2Y730• in D2O. [[superscript 2]H]-Electron–nuclear double resonance (ENDOR) spectra at 94 GHz of this intermediate were obtained, and together with DFT models of α2 and quantum chemical calculations allowed assignment of the prominent ENDOR features to two hydrogen bonds likely associated with C[subscript 439] and Y[subscript 731]. A third proton was assigned to a water molecule in close proximity (2.2 Å O–H···O distance) to residue 730. The calculations also suggest that the unusual g-values measured for NH[subscript 2]Y[subscript 730]• are consistent with the combined effect of the hydrogen bonds to Cys[subscript 439] and Tyr[subscript 731], both nearly perpendicular to the ring plane of NH[subscript 2]Y[subscript 730]. The results provide the first experimental evidence for the hydrogen-bond network between the pathway residues in α2 of the active RNR complex, for which no structural data are available.National Institutes of Health (U.S.) (NIH GM29595

    Reorganization Energy for Internal Electron Transfer in Multicopper Oxidases.

    Get PDF
    We have calculated the reorganization energy for the intramolecular electron transfer between the reduced type 1 copper site and the peroxy intermediate of the trinuclear cluster in the multicopper oxidase CueO. The calculations are performed at the combined quantum mechanics and molecular mechanics (QM/MM) level, based on molecular dynamics simulations with tailored potentials for the two copper sites. We obtain a reorganization energy of 91-133 kJ/mol, depending on the theoretical treatment. The two Cu sites contribute by 12 and 22 kJ/mol to this energy, whereas the solvent contribution is 34 kJ/mol. The rest comes from the protein, involving small contributions from many residues. We have also estimated the energy difference between the two electron-transfer states and show that the reduction of the peroxy intermediate is exergonic by 43-87 kJ/mol, depending on the theoretical method. Both the solvent and the protein contribute to this energy difference, especially charged residues close to the two Cu sites. We compare these estimates with energies obtained from QM/MM optimizations and QM calculations in a vacuum and discuss differences between the results obtained at various levels of theory

    Habitat effects on the breeding performance of three forest-dwelling hawks

    Get PDF
    PLoS ONE 10(9): e0137877Habitat loss causes population declines, but the mechanisms are rarely known. In the European Boreal Zone, loss of old forest due to intensive forestry is suspected to cause declines in forest-dwelling raptors by reducing their breeding performance. We studied the boreal breeding habitat and habitat-associated breeding performance of the northern goshawk (Accipiter gentilis), common buzzard (Buteo buteo) and European honey buzzard (Pernis apivorus). We combined long-term Finnish bird-of-prey data with multi-source national forest inventory data at various distances (100–4000 m) around the hawk nests. We found that breeding success of the goshawk was best explained by the habitat within a 2000-m radius around the nests; breeding was more successful with increasing proportions of old spruce forest and water, and decreasing proportions of young thinning forest. None of the habitat variables affected significantly the breeding success of the common buzzard or the honey buzzard, or the brood size of any of the species. The amount of old spruce forest decreased both around goshawk and common buzzard nests and throughout southern Finland in 1992–2010. In contrast, the area of young forest increased in southern Finland but not around hawk nests. We emphasize the importance of studying habitats at several spatial and temporal scales to determine the relevant species-specific scale and to detect environmental changes. Further effort is needed to reconcile the socioeconomic and ecological functions of forests and habitat requirements of old forest specialists.Peer reviewe

    A molecular-based identification resource for the arthropods of Finland

    Get PDF
    To associate specimens identified by molecular characters to other biological knowledge, we need reference sequences annotated by Linnaean taxonomy. In this study, we (1) report the creation of a comprehensive reference library of DNA barcodes for the arthropods of an entire country (Finland), (2) publish this library, and (3) deliver a new identification tool for insects and spiders, as based on this resource. The reference library contains mtDNA COI barcodes for 11,275 (43%) of 26,437 arthropod species known from Finland, including 10,811 (45%) of 23,956 insect species. To quantify the improvement in identification accuracy enabled by the current reference library, we ran 1000 Finnish insect and spider species through the Barcode of Life Data system (BOLD) identification engine. Of these, 91% were correctly assigned to a unique species when compared to the new reference library alone, 85% were correctly identified when compared to BOLD with the new material included, and 75% with the new material excluded. To capitalize on this resource, we used the new reference material to train a probabilistic taxonomic assignment tool, FinPROTAX, scoring high success. For the full-length barcode region, the accuracy of taxonomic assignments at the level of classes, orders, families, subfamilies, tribes, genera, and species reached 99.9%, 99.9%, 99.8%, 99.7%, 99.4%, 96.8%, and 88.5%, respectively. The FinBOL arthropod reference library and FinPROTAX are available through the Finnish Biodiversity Information Facility (www.laji.fi) at https://laji.fi/en/theme/protax. Overall, the FinBOL investment represents a massive capacity-transfer from the taxonomic community of Finland to all sectors of society.</p

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure
    corecore