30 research outputs found

    Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients

    Get PDF
    Electroencephalography is mandatory to determine the epilepsy syndrome. However, for the precise localization of the irritative zone in patients with focal epilepsy, costly and sometimes cumbersome imaging techniques are used. Recent small studies using electric source imaging suggest that electroencephalography itself could be used to localize the focus. However, a large prospective validation study is missing. This study presents a cohort of 152 operated patients where electric source imaging was applied as part of the pre-surgical work-up allowing a comparison with the results from other methods. Patients (n = 152) with >1 year postoperative follow-up were studied prospectively. The sensitivity and specificity of each imaging method was defined by comparing the localization of the source maximum with the resected zone and surgical outcome. Electric source imaging had a sensitivity of 84% and a specificity of 88% if the electroencephalogram was recorded with a large number of electrodes (128–256 channels) and the individual magnetic resonance image was used as head model. These values compared favourably with those of structural magnetic resonance imaging (76% sensitivity, 53% specificity), positron emission tomography (69% sensitivity, 44% specificity) and ictal/interictal single-photon emission-computed tomography (58% sensitivity, 47% specificity). The sensitivity and specificity of electric source imaging decreased to 57% and 59%, respectively, with low number of electrodes (<32 channels) and a template head model. This study demonstrated the validity and clinical utility of electric source imaging in a large prospective study. Given the low cost and high flexibility of electroencephalographic systems even with high channel counts, we conclude that electric source imaging is a highly valuable tool in pre-surgical epilepsy evaluation

    SOX11 identified by target gene evaluation of miRNAs differentially expressed in focal and non-focal brain tissue of therapy-resistant epilepsy patients.

    Get PDF
    MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally control the expression of their target genes via RNA interference. There is increasing evidence that expression of miRNAs is dysregulated in neuronal disorders, including epilepsy, a chronic neurological disorder characterized by spontaneous recurrent seizures. Mesial temporal lobe epilepsy (MTLE) is a common type of focal epilepsy in which disease-induced abnormalities of hippocampal neurogenesis in the subgranular zone as well as gliosis and neuronal cell loss in the cornu ammonis area are reported. We hypothesized that in MTLE altered miRNA-mediated regulation of target genes could be involved in hippocampal cell remodeling. A miRNA screen was performed in hippocampal focal and non-focal brain tissue samples obtained from the temporal neocortex (both n=8) of MTLE patients. Out of 215 detected miRNAs, two were differentially expressed (hsa-miR-34c-5p: mean increase of 5.7 fold (p=0.014), hsa-miR-212-3p: mean decrease of 76.9% (p=0.0014)). After in-silico target gene analysis and filtering, reporter gene assays confirmed RNA interference for hsa-miR-34c-5p with 3'-UTR sequences of GABRA3, GRM7 and GABBR2 and for hsa-miR-212-3p with 3'-UTR sequences of SOX11, MECP2, ADCY1 and ABCG2. Reporter gene assays with mutated 3'-UTR sequences of the transcription factor SOX11 identified two different binding sites for hsa-miR-212-3p and its primary transcript partner hsa-miR-132-3p. Additionally, there was an inverse time-dependent expression of Sox11 and miR-212-3p as well as miR-132-3p in rat neonatal cortical neurons. Transfection of neurons with anti-miRs for miR-212-3p and miR-132-3p suggest that both miRNAs work synergistically to control Sox11 expression. Taken together, these results suggest that differential miRNA expression in neurons could contribute to an altered function of the transcription factor SOX11 and other genes in the setting of epilepsy, resulting not only in impaired neural differentiation, but also in imbalanced neuronal excitability and accelerated drug export
    corecore