94 research outputs found

    Signature Lipids and Stable Carbon Isotope Analyses of Octopus Spring Hyperthermophilic Communities Compared with those of Aquificales Representatives

    Get PDF
    The molecular and isotopic compositions of lipid biomarkers of cultured Aquificales genera have been used to study the community and trophic structure of the hyperthermophilic pink streamers and vent biofilm from Octopus Spring. Thermocrinis ruber, Thermocrinis sp. strain HI 11/12, Hydrogenobacter thermophilus TK-6, Aquifex pyrophilus, and Aquifex aeolicus all contained glycerol-ether phospholipids as well as acyl glycerides. The n-C20:1 and cy-C21 fatty acids dominated all of the Aquificales, while the alkyl glycerol ethers were mainly C18:0. These Aquificales biomarkers were major constituents of the lipid extracts of two Octopus Spring samples, a biofilm associated with the siliceous vent walls, and the well-known pink streamer community (PSC). Both the biofilm and the PSC contained mono- and dialkyl glycerol ethers in which C18 and C20 alkyl groups were prevalent. Phospholipid fatty acids included both the Aquificales n-C20:1 and cy-C21, plus a series of isobranched fatty acids (i-C15:0 to i-C21:0), indicating an additional bacterial component. Biomass and lipids from the PSC were depleted in 13C relative to source water CO2 by 10.9 and 17.2%, respectively. The C20?21 fatty acids of the PSC were less depleted than the iso-branched fatty acids, 18.4 and 22.6%, respectively. The biomass of T. ruber grown on CO2 was depleted in 13C by only 3.3% relative to C source. In contrast, biomass was depleted by 19.7% when formate was the C source. Independent of carbon source, T. ruber lipids were heavier than biomass (1.3%). The depletion in the C20?21 fatty acids from the PSC indicates that Thermocrinis biomass must be similarly depleted and too light to be explained by growth on CO2. Accordingly, Thermocrinis in the PSC is likely to have utilized formate, presumably generated in the spring source region

    Individual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to esfenvalerate and chlorpyrifos

    Get PDF
    Abstract Acetylcholinesterase (AChE) activity has traditionally been monitored as a biomarker of organophosphate (OP) and/or carbamate exposure. However, AChE activity may not be the most sensitive endpoint for these agrochemicals, because OPs can cause adverse physiological effects at concentrations that do not affect AChE activity. Carboxylesterases are a related family of enzymes that have higher affinity than AChE for some OPs and carbamates and may be more sensitive indicators of environmental exposure to these pesticides. In this study, carboxylesterase and AChE activity, cytochrome P4501A (CYP1A) protein levels, and mortality were measured in individual juvenile Chinook salmon (Oncorhynchus tshawytscha) following exposure to an OP (chlorpyrifos) and a pyrethroid (esfenvalerate). As expected, high doses of chlorpyrifos and esfenvalerate were acutely toxic, with nominal concentrations (100 and 1 g/l, respectively) causing 100% mortality within 96 h. Exposure to chlorpyrifos at a high dose (7.3 g/l), but not a low dose (1.2 g/l), significantly inhibited AChE activity in both brain and muscle tissue (85% and 92% inhibition, respectively), while esfenvalerate exposure had no effect. In contrast, liver carboxylesterase activity was significantly inhibited at both the low and high chlorpyrifos dose exposure (56% and 79% inhibition, respectively), while esfenvalerate exposure still had little effect. The inhibition of carboxylesterase activity at levels of chlorpyrifos that did not affect AChE activity suggests that some salmon carboxylesterase isozymes may be more sensitive than AChE to inhibition by OPs. CYP1A protein levels were ∌30% suppressed by chlorpyrifos exposure at the high dose, but esfenvalerate had no effect. Three teleost species, Chinook salmon, medaka (Oryzias latipes) and Sacramento splittail (Pogonichthys macrolepidotus), were examined for their ability to hydrolyze a series of pyrethroid surrogate substrates and in all cases hydrolysis activity was undetectable. * Corresponding author. Wheelock et al. / Aquatic Toxicology 74 (2005) 172-192 173 Together these data suggest that (1) carboxylesterase activity inhibition may be a more sensitive biomarker for OP exposure than AChE activity, (2) neither AChE nor carboxylesterase activity are biomarkers for pyrethroid exposure, (3) CYP1A protein is not a sensitive marker for these agrochemicals and (4) slow hydrolysis rates may be partly responsible for acute pyrethroid toxicity in fish

    Integrative analysis of prognostic biomarkers derived from multiomics panels for the discrimination of chronic kidney disease trajectories in people with type 2 diabetes

    Get PDF
    Clinical risk factors explain only a fraction of the variability of estimated glomerular filtration rate (eGFR) decline in people with type 2 diabetes. Cross-omics technologies by virtue of; a wide spectrum screening of plasma samples have the potential to identify biomarkers for the refinement of prognosis in addition to clinical variables. Here we utilized proteomics, metabolomics and lipidomics panel assay measurements in baseline plasma samples from the multinational PROVALID study (PROspective cohort study in patients with type 2 diabetes mellitus for VALIDation of biomarkers) of patients with incident or early chronic kidney disease (median follow-up 35 months, median baseline eGFR 84 mL/min/1.73m2, urine albumin-to-creatinine ratio 8.1 mg/g). In an accelerated case-control study, 258 individuals with a stable eGFR course (median eGFR change 0.1 mL/min/year) were compared to 223 individuals with a rapid eGFR decline (median eGFR decline -6.75 mL/min/year) using Bayesian multivariable logistic regression models to assess the discrimination of eGFR trajectories. The analysis included 402 candidate predictors and showed two protein markers (KIM-1, NTproBNP) to be relevant predictors of the eGFR trajectory with baseline eGFR being an important clinical covariate. The inclusion of metabolomic and lipidomic platforms did not improve discrimination substantially. Predictions using all available variables were statistically indistinguishable from predictions using only KIM-1 and baseline eGFR (area under the receiver operating characteristic curve 0.63). Thus, the discrimination of eGFR trajectories in patients with incident or early diabetic kidney disease and maintained baseline eGFR was modest and the protein marker KIM-1 was the most important predictor

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≀ 18 years: 69, 48, 23; 85%), older adults (≄ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    Standardization of an in vitro assay matrix to assess cytotoxicity of organic nanocarriers: a pilot interlaboratory comparison.

    Get PDF
    Nanotechnologies such as nanoparticles are established components of new medical devices and pharmaceuticals. The use and distribution of these materials increases the requirement for standardized evaluation of possible adverse effects, starting with a general cytotoxicity screening. The Horizon 2020 project "Regulatory Science Framework for Nano(bio)material-based Medical Products and Devices (REFINE)" identified in vitro cytotoxicity quantification as a central task and first step for risk assessment and development for medical nanocarriers. We have performed an interlaboratory comparison on a cell-assay matrix including a kinetic lactate dehydrogenase (LDH) release cell death and WST-8 cell viability assay adapted for testing organic nanocarriers in four well-characterized cell lines of different organ origins. Identical experiments were performed by three laboratories, namely the Biomedical Technology Center (BMTZ) of the University of MĂŒnster, SINTEF Materials and Chemistry (SINTEF), and the National Institute for Public Health and the Environment (RIVM) of the Netherlands according to new standard operating procedures (SOPs). The experiments confirmed that LipImageℱ 815 lipidotsÂź are non-cytotoxic up to a concentration of 128 ”g/mL and poly(alkyl cyanoacrylate) (PACA) nanoparticles for drug delivery of cytostatic agents caused dose-dependent cytotoxic effects on the cell lines starting from 8 ”g/mL. PACA nanoparticles loaded with the active pharmaceutical ingredient (API) cabazitaxel showed a less pronounced dose-dependent effect with the lowest concentration of 2 ”g/mL causing cytotoxic effects. The mean within laboratory standard deviation was 4.9% for the WST-8 cell viability assay and 4.0% for the LDH release cell death assay, while the between laboratory standard deviation was 7.3% and 7.8% for the two assays, respectively. Here, we demonstrated the suitability and reproducibility of a cytotoxicity matrix consisting of two endpoints performed with four cell lines across three partner laboratories. The experimental procedures described here can facilitate a robust cytotoxicity screening for the development of organic nanomaterials used in medicine

    Standardization of an in vitro assay matrix to assess cytotoxicity of organic nanocarriers: a pilot interlaboratory comparison

    No full text
    Nanotechnologies such as nanoparticles are established components of new medical devices and pharmaceuticals. The use and distribution of these materials increases the requirement for standardized evaluation of possible adverse effects, starting with a general cytotoxicity screening. The Horizon 2020 project “Regulatory Science Framework for Nano(bio)material-based Medical Products and Devices (REFINE)” identified in vitro cytotoxicity quantification as a central task and first step for risk assessment and development for medical nanocarriers. We have performed an interlaboratory comparison on a cell-assay matrix including a kinetic lactate dehydrogenase (LDH) release cell death and WST-8 cell viability assay adapted for testing organic nanocarriers in four well-characterized cell lines of different organ origins. Identical experiments were performed by three laboratories, namely the Biomedical Technology Center (BMTZ) of the University of MĂŒnster, SINTEF Materials and Chemistry (SINTEF), and the National Institute for Public Health and the Environment (RIVM) of the Netherlands according to new standard operating procedures (SOPs). The experiments confirmed that LipImageℱ 815 lipidotsÂź are non-cytotoxic up to a concentration of 128 ”g/mL and poly(alkyl cyanoacrylate) (PACA) nanoparticles for drug delivery of cytostatic agents caused dose-dependent cytotoxic effects on the cell lines starting from 8 ”g/mL. PACA nanoparticles loaded with the active pharmaceutical ingredient (API) cabazitaxel showed a less pronounced dose-dependent effect with the lowest concentration of 2 ”g/mL causing cytotoxic effects. The mean within laboratory standard deviation was 4.9% for the WST-8 cell viability assay and 4.0% for the LDH release cell death assay, while the between laboratory standard deviation was 7.3% and 7.8% for the two assays, respectively. Here, we demonstrated the suitability and reproducibility of a cytotoxicity matrix consisting of two endpoints performed with four cell lines across three partner laboratories. The experimental procedures described here can facilitate a robust cytotoxicity screening for the development of organic nanomaterials used in medicine
    • 

    corecore