9 research outputs found

    Vascular endothelial growth factor-A165b is protective and restores endothelial glycocalyx in diabetic nephropathy

    Get PDF
    Diabetic nephropathy is the leading cause of ESRD in high-income countries and a growing problem across the world. Vascular endothelial growth factor-A (VEGF-A) is thought to be a critical mediator of vascular dysfunction in diabetic nephropathy, yet VEGF-A knockout and overexpression of angiogenic VEGF-A isoforms each worsen diabetic nephropathy. We examined the vasculoprotective effects of the VEGF-A isoform VEGF-A165b in diabetic nephropathy. Renal expression of VEGF-A165b mRNA was upregulated in diabetic individuals with well preserved kidney function, but not in those with progressive disease. Reproducing this VEGF-A165b upregulation in mouse podocytes in vivo prevented functional and histologic abnormalities in diabetic nephropathy. Biweekly systemic injections of recombinant human VEGF-A165b reduced features of diabetic nephropathy when initiated during early or advanced nephropathy in a model of type 1 diabetes and when initiated during early nephropathy in a model of type 2 diabetes. VEGF-A165b normalized glomerular permeability through phosphorylation of VEGF receptor 2 in glomerular endothelial cells, and reversed diabetes-induced damage to the glomerular endothelial glycocalyx. VEGF-A165b also improved the permeability function of isolated diabetic human glomeruli. These results show that VEGF-A165b acts via the endothelium to protect blood vessels and ameliorate diabetic nephropathy

    Novel haemodynamic structures in the human glomerulus

    Get PDF
    To investigate human glomerular structure under conditions of physiological perfusion we have analysed fresh and perfusion fixed normal human glomeruli at physiological hydrostatic and oncotic pressures using serial resin section reconstruction, confocal, multiphoton and electron microscope imaging. Afferent and efferent arterioles (21.5±1.2µm and 15.9±1.2µm diameter), recognised from vascular origins, lead into previously undescribed wider regions (43.2±2.8 µm and 38.4±4.9 µm diameter) we have termed vascular chambers (VCs) embedded in the mesangium of the vascular pole. Afferent VC(AVC) volume was 1.6 fold greater than Efferent VC(EVC) volume. From the AVC long non-branching high capacity conduit vessels (n=7) (Con; 15.9±0.7µm diameter) led to the glomerular edge where branching was more frequent. Conduit vessels have fewer podocytes than filtration capillaries. VCs were confirmed in fixed and unfixed specimens with a layer of banded collagen identified in AVC walls by multiphoton and electron microscopy. Thirteen highly branched efferent first order vessels (E1;9.9±0.4µm diam.) converge on the EVC draining into the efferent arteriole (15.9±1.2µm diam.). Banded collagen was scarce around EVC. This previously undescribed branching topology does not conform to the branching of minimum energy expenditure (Murray’s law), suggesting even distribution of pressure/flow to the filtration capillaries is more important than maintaining the minimum work required for blood flow. We propose that AVCs act as plenum manifolds possibly aided by vortical flow in distributing and balancing blood flow/pressure to conduit vessels supplying glomerular lobules. These major adaptations to glomerular capillary structure could regulate haemodynamic pressure and flow in human glomerular capillaries

    Alternative splicing of TIA-1 in human colon cancer regulates VEGF isoform expression, angiogenesis, tumour growth and bevacizumab resistance

    Get PDF
    © 2014 The Authors. The angiogenic capability of colorectal carcinomas (CRC), and their susceptibility to anti-angiogenic therapy, is determined by expression of vascular endothelial growth factor (VEGF) isoforms. The intracellular protein T-cell Intracellular Antigen (TIA-1) alters post-transcriptional RNA processing and binds VEGF-A mRNA. We therefore tested the hypothesis that TIA-1 could regulate VEGF-A isoform expression in colorectal cancers. TIA-1 and VEGF-A isoform expression was measured in colorectal cancers and cell lines. We discovered that an endogenous splice variant of TIA-1 encoding a truncated protein, short TIA-1 (sTIA-1) was expressed in CRC tissues and invasive K-Ras mutant colon cancer cells and tissues but not in adenoma cell lines. sTIA-1 was more highly expressed in CRC than in normal tissues and increased with tumour stage. Knockdown of sTIA-1 or over-expression of full length TIA-1 (flTIA-1) induced expression of the anti-angiogenic VEGF isoform VEGF-A 165 b. Whereas flTIA-1 selectively bound VEGF-A 165 mRNA and increased translation of VEGF-A 165 b, sTIA-1 prevented this binding. In nude mice, xenografted colon cancer cells over-expressing flTIA-1 formed smaller, less vascular tumours than those expressing sTIA-1, but flTIA-1 expression inhibited the effect of anti-VEGF antibodies. These results indicate that alternative splicing of an RNA binding protein can regulate isoform specific expression of VEGF providing an added layer of complexity to the angiogenic profile of colorectal cancer and their resistance to anti-angiogenic therapy

    Direct detection and measurement of wall shear stress using a filamentous bio-nanoparticle

    Get PDF
    The wall shear stress (WSS) that a moving fluid exerts on a surface affects many processes including those relating to vascular function. WSS plays an important role in normal physiology (e.g. angiogenesis) and affects the microvasculature's primary function of molecular transport. Points of fluctuating WSS show abnormalities in a number of diseases; however, there is no established technique for measuring WSS directly in physiological systems. All current methods rely on estimates obtained from measured velocity gradients in bulk flow data. In this work, we report a nanosensor that can directly measure WSS in microfluidic chambers with sub-micron spatial resolution by using a specific type of virus, the bacteriophage M13, which has been fluorescently labeled and anchored to a surface. It is demonstrated that the nanosensor can be calibrated and adapted for biological tissue, revealing WSS in micro-domains of cells that cannot be calculated accurately from bulk flow measurements. This method lends itself to a platform applicable to many applications in biology and microfluidics

    VEGFC Reduces Glomerular Albumin Permeability and Protects Against Alterations in VEGF Receptor Expression in Diabetic Nephropathy

    Get PDF
    Elevated levels of vascular endothelial growth factor (VEGF) A are thought to cause glomerular endothelial cell (GEnC) dysfunction and albuminuria in diabetic nephropathy. We hypothesized that VEGFC could counteract these effects of VEGFA to protect the glomerular filtration barrier and reduce albuminuria. Isolated glomeruli were stimulated ex vivo with VEGFC, which reduced VEGFA- and type 2 diabetes–induced glomerular albumin solute permeability (Ps’alb). VEGFC had no detrimental effect on glomerular function in vivo when overexpression was induced locally in podocytes (podVEGFC) in otherwise healthy mice. Further, these mice had reduced glomerular VEGFA mRNA expression, yet increased glomerular VEGF receptor heterodimerization, indicating differential signaling by VEGFC. In a model of type 1 diabetes, the induction of podVEGFC overexpression reduced the development of hypertrophy, albuminuria, loss of GEnC fenestrations and protected against altered VEGF receptor expression. In addition, VEGFC protected against raised Ps’alb by endothelial glycocalyx disruption in glomeruli. In summary, VEGFC reduced the development of diabetic nephropathy, prevented VEGF receptor alterations in the diabetic glomerulus, and promoted both glomerular protection and endothelial barrier function. These important findings highlight a novel pathway for future investigation in the treatment of diabetic nephropathy
    corecore