224 research outputs found

    TCUP: A Novel hAT Transposon Active in Maize Tissue Culture

    Get PDF
    Transposable elements (TEs) are capable of inducing heritable de novo genetic variation. The sequences capable of reactivation, and environmental factors that induce mobilization, remain poorly defined even in well-studied genomes such as maize. We treated maize tissue culture with the demethylating agent 5-aza-2-deoxcytidine and examined long-term tissue culture lines to discover silenced TEs that have the potential to induce heritable genetic variation. Through these screens we have identified a novel low copy number hAT transposon, Tissue Culture Up-Regulated (TCUP), which is transcribed at high levels in long-term maize black Mexican sweet (BMS) tissue culture and is transcribed in response to treatment with 5-aza-2-deoxycytidine. Analysis of the TIGR Maize Gene Index revealed that this element is the most frequently represented EST from the BMS cell culture library and is not represented in other tissue libraries, which is the basis for its name. A full-length sequence was assembled in inbred B73 that contains the putative functional motifs required for autonomous movement of a hAT transposon. Transposon display detected novel TCUP insertions in two long-term tissue-cultured cell lines of the genotype Hi-II A × B and BMS. This research implicates TCUP as a transposon that is capable of reactivation and which may also be particularly sensitive to the stress of the tissue culture environment. Our findings are consistent with the hypothesis that epigenetic alterations potentiate genomic responses to stress during clonal propagation of plants

    Selection Signatures in Four Lignin Genes from Switchgrass Populations Divergently Selected for \u3ci\u3eIn Vitro\u3c/i\u3e Dry Matter Digestibility

    Get PDF
    Switchgrass is undergoing development as a dedicated cellulosic bioenergy crop. Fermentation of lignocellulosic biomass to ethanol in a bioenergy system or to volatile fatty acids in a livestock production system is strongly and negatively influenced by lignification of cell walls. This study detects specific loci that exhibit selection signatures across switchgrass breeding populations that differ in in vitro dry matter digestibility (IVDMD), ethanol yield, and lignin concentration. Allele frequency changes in candidate genes were used to detect loci under selection. Out of the 183 polymorphisms identified in the four candidate genes, twenty-five loci in the intron regions and four loci in coding regions were found to display a selection signature. All loci in the coding regions are synonymous substitutions. Selection in both directions were observed on polymorphisms that appeared to be under selection. Genetic diversity and linkage disequilibrium within the candidate genes were low. The recurrent divergent selection caused excessive moderate allele frequencies in the cycle 3 reduced lignin population as compared to the base population. This study provides valuable insight on genetic changes occurring in short-term selection in the polyploid populations, and discovered potential markers for breeding switchgrass with improved biomass quality

    TIPS: a system for automated image-based phenotyping of maize tassels

    Get PDF
    Abstract Background The maize male inflorescence (tassel) produces pollen necessary for reproduction and commercial grain production of maize. The size of the tassel has been linked to factors affecting grain yield, so understanding the genetic control of tassel architecture is an important goal. Tassels are fragile and deform easily after removal from the plant, necessitating rapid measurement of any shape characteristics that cannot be retained during storage. Some morphological characteristics of tassels such as curvature and compactness are difficult to quantify using traditional methods, but can be quantified by image-based phenotyping tools. These constraints necessitate the development of an efficient method for capturing natural-state tassel morphology and complementary automated analytical methods that can quickly and reproducibly quantify traits of interest such as height, spread, and branch number. Results This paper presents the Tassel Image-based Phenotyping System (TIPS), which provides a platform for imaging tassels in the field immediately following removal from the plant. TIPS consists of custom methods that can quantify morphological traits from profile images of freshly harvested tassels acquired with a standard digital camera in a field-deployable light shelter. Correlations between manually measured traits (tassel weight, tassel length, spike length, and branch number) and image-based measurements ranged from 0.66 to 0.89. Additional tassel characteristics quantified by image analysis included some that cannot be quantified manually, such as curvature, compactness, fractal dimension, skeleton length, and perimeter. TIPS was used to measure tassel phenotypes of 3530 individual tassels from 749 diverse inbred lines that represent the diversity of tassel morphology found in modern breeding and academic research programs. Repeatability ranged from 0.85 to 0.92 for manually measured phenotypes, from 0.77 to 0.83 for the same traits measured by image-based methods, and from 0.49 to 0.81 for traits that can only be measured by image analysis. Conclusions TIPS allows morphological features of maize tassels to be quantified automatically, with minimal disturbance, at a scale that supports population-level studies. TIPS is expected to accelerate the discovery of associations between genetic loci and tassel morphology characteristics, and can be applied to maize breeding programs to increase productivity with lower resource commitment

    Additive Manufacturing of Ceramic Materials: a Performance Comparison of Catalysts for Monopropellant Thrusters

    Get PDF
    Switchgrass ( L.) is a promising herbaceous energy crop, but further gains in biomass yield and quality must be achieved to enable a viable bioenergy industry. Developing DNA markers can contribute to such progress, but depiction of genetic bases should be reliable, involving simple additive marker effects and also interactions with genetic backgrounds (e.g., ecotypes) or synergies with other markers. We analyzed plant height, C content, N content, and mineral concentration in a diverse panel consisting of 512 genotypes of upland and lowland ecotypes. We performed association analyses based on exome capture sequencing and tested 439,170 markers for marginal effects, 83,290 markers for marker × ecotype interactions, and up to 311,445 marker pairs for pairwise interactions. Analyses of pairwise interactions focused on subsets of marker pairs preselected on the basis of marginal marker effects, gene ontology annotation, and pairwise marker associations. Our tests identified 12 significant effects. Homology and gene expression information corroborated seven effects and indicated plausible causal pathways: flowering time and lignin synthesis for plant height; plant growth and senescence for C content and mineral concentration. Four pairwise interactions were detected, including three interactions preselected on the basis of pairwise marker correlations. Furthermore, a marker × ecotype interaction and a pairwise interaction were confirmed in an independent switchgrass panel. Our analyses identified reliable candidate variants for important bioenergy traits. Moreover, they exemplified the importance of interactive effects for depicting genetic bases and illustrated the usefulness of preselecting marker pairs for identifying pairwise marker interactions in association studies

    Quantitative Trait Loci for Freezing Tolerance in a Lowland x Upland Switchgrass Population

    Get PDF
    Low-temperature related abiotic stress is an important factor affecting winter survival in lowland switchgrass when grown in northern latitudes in the United States. A better understanding of the genetic architecture of freezing tolerance in switchgrass will aid the development of lowland switchgrass cultivars with improved winter survival. The objectives of this study were to conduct a freezing tolerance assessment, generate a genetic map using single nucleotide polymorphism (SNP) markers, and identify QTL (quantitative trait loci) associated with freezing tolerance in a lowland × upland switchgrass population. A pseudo-F2 mapping population was generated from an initial cross between the lowland population Ellsworth and the upland cultivar Summer. The segregating progenies were screened for freezing tolerance in a controlled-environment facility. Two clonal replicates of each genotype were tested at six different treatment temperatures ranging from −15 to −5°C at an interval of 2°C for two time periods. Tiller emergence (days) and tiller number were recorded following the recovery of each genotype with the hypothesis that upland genotype is the source for higher tiller number and early tiller emergence. Survivorship of the pseudo-F2 population ranged from 89% at −5°C to 5% at −15°C with an average LT50 of −9.7°C. Genotype had a significant effect on all traits except tiller number at −15°C. A linkage map was constructed from bi-allelic single nucleotide polymorphism markers generated using exome capture sequencing. The final map consisted of 1618 markers and 2626 cM, with an average inter-marker distance of 1.8 cM. Six significant QTL were identified, one each on chromosomes 1K, 5K, 5N, 6K, 6N, and 9K, for the following traits: tiller number, tiller emergence days and LT50. A comparative genomics study revealed important freezing tolerance genes/proteins, such as COR47, DREB2B, zinc finger-CCCH, WRKY, GIGANTEA, HSP70, and NRT2, among others that reside within the 1.5 LOD confidence interval of the identified QTL

    Genetic control of root architectural plasticity in maize

    Get PDF
    © 2020 The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. Root phenotypes regulate soil resource acquisition; however, their genetic control and phenotypic plasticity are poorly understood. We hypothesized that the responses of root architectural phenes to water deficit (stress plasticity) and different environments (environmental plasticity) are under genetic control and that these loci are distinct. Root architectural phenes were phenotyped in the field using a large maize association panel with and without water deficit stress for three seasons in Arizona and without water deficit stress for four seasons in South Africa. All root phenes were plastic and varied in their plastic response. We identified candidate genes associated with stress and environmental plasticity and candidate genes associated with phenes in well-watered conditions in South Africa and in well-watered and water-stress conditions in Arizona. Few candidate genes for plasticity overlapped with those for phenes expressed under each condition. Our results suggest that phenotypic plasticity is highly quantitative, and plasticity loci are distinct from loci that control phene expression in stress and non-stress, which poses a challenge for breeding programs. To make these loci more accessible to the wider research community, we developed a public online resource that will allow for further experimental validation towards understanding the genetic control underlying phenotypic plasticity

    Post-glacial evolution of \u3ci\u3ePanicum virgatum\u3c/i\u3e: centers of diversity and gene pools revealed by SSR markers and cpDNA sequences

    Get PDF
    Switchgrass (Panicum virgatum), a central and Eastern USA native, is highly valued as a component in tallgrass prairie and savanna restoration and conservation projects and a potential bioenergy feedstock. The purpose of this study was to identify regional diversity, gene pools, and centers-of-diversity of switchgrass to gain an understanding of its post-glacial evolution and to identify both the geographic range and potential overlap between functional gene pools. We sampled a total of 384 genotypes from 49 accessions that included the three main taxonomic groups of switchgrass (lowland 4x, upland 4x, and upland 8x) along with one accession possessing an intermediate phenotype. We identified primary centers of diversity for switchgrass in the eastern and western Gulf Coast regions. Migration, drift, and selection have led to adaptive radiation in switchgrass, creating regional gene pools within each of the main taxa. We estimate that both upland-lowland divergence and 4x-to-8x polyploidization within switchgrass began approximately 1.5–1 M ybp and that subsequent ice age cycles have resulted in gene flow between ecotype lineages and between ploidy levels. Gene flow has resulted in ‘‘hot spots’’ of genetic diversity in the southeastern USA and along the Atlantic Seaboard

    Genome-wide association analysis of stalk biomass and anatomical traits in maize.

    Get PDF
    BackgroundMaize stover is an important source of crop residues and a promising sustainable energy source in the United States. Stalk is the main component of stover, representing about half of stover dry weight. Characterization of genetic determinants of stalk traits provide a foundation to optimize maize stover as a biofuel feedstock. We investigated maize natural genetic variation in genome-wide association studies (GWAS) to detect candidate genes associated with traits related to stalk biomass (stalk diameter and plant height) and stalk anatomy (rind thickness, vascular bundle density and area).ResultsUsing a panel of 942 diverse inbred lines, 899,784 RNA-Seq derived single nucleotide polymorphism (SNP) markers were identified. Stalk traits were measured on 800 members of the panel in replicated field trials across years. GWAS revealed 16 candidate genes associated with four stalk traits. Most of the detected candidate genes were involved in fundamental cellular functions, such as regulation of gene expression and cell cycle progression. Two of the regulatory genes (Zmm22 and an ortholog of Fpa) that were associated with plant height were previously shown to be involved in regulating the vegetative to floral transition. The association of Zmm22 with plant height was confirmed using a transgenic approach. Transgenic lines with increased expression of Zmm22 showed a significant decrease in plant height as well as tassel branch number, indicating a pleiotropic effect of Zmm22.ConclusionSubstantial heritable variation was observed in the association panel for stalk traits, indicating a large potential for improving useful stalk traits in breeding programs. Genome-wide association analyses detected several candidate genes associated with multiple traits, suggesting common regulatory elements underlie various stalk traits. Results of this study provide insights into the genetic control of maize stalk anatomy and biomass

    Nucleotide polymorphism and copy number variant detection using exome capture and next-generation sequencing in the polyploid grass \u3ci\u3ePanicum virgatum\u3c/i\u3e

    Get PDF
    Switchgrass (Panicum virgatum) is a polyploid, outcrossing grass species native to North America and has recently been recognized as a potential biofuel feedstock crop. Significant phenotypic variation including ploidy is present across the two primary ecotypes of switchgrass, referred to as upland and lowland switchgrass. The tetraploid switchgrass genome is approximately 1400 Mbp, split between two subgenomes, with significant repetitive sequence content limiting the efficiency of re-sequencing approaches for determining genome diversity. To characterize genetic diversity in upland and lowland switchgrass as a first step in linking genotype to phenotype, we designed an exome capture probe set based on transcript assemblies that represent approximately 50 Mb of annotated switchgrass exome sequences. We then evaluated and optimized the probe set using solid phase comparative genome hybridization and liquid phase exome capture followed by next-generation sequencing. Using the optimized probe set, we assessed variation in the exomes of eight switchgrass genotypes representing tetraploid lowland and octoploid upland cultivars to benchmark our exome capture probe set design. We identified ample variation in the switchgrass genome including 1 395 501 single nucleotide polymorphisms (SNPs), 8173 putative copy number variants and 3336 presence/absence variants. While the majority of the SNPs (84%) detected was bi-allelic, a substantial number was tri-allelic with limited occurrence of tetra-allelic polymorphisms consistent with the heterozygous and polyploid nature of the switchgrass genome. Collectively, these data demonstrate the efficacy of exome capture for discovery of genome variation in a polyploid species with a large, repetitive and heterozygous genome
    corecore