127 research outputs found

    Integrin Adhesions Suppress Syncytium Formation in the Drosophila Larval Epidermis

    Get PDF
    Funding Information: We thank members of M.J.G.’s lab for comments; Jodie Polan for confocal assistance; Guy Tanentzapf, Andreas Wodarz, and Talila Volk, for fly stocks/antibodies; the Bloomington Drosophila Stock Center, the Vienna Drosophila RNAi Center, and the Kyoto stock center for fly strains; and the Developmental Studies Hybridoma Bank for antibodies. This work was supported by a March of Dimes Basil O’Connor Award (5-FY06-588) and NIH R01 GM083031 to M.J.G., NIH R01 GM084103 to J.L.K., and European Research Council Starting Grant (2007-StG-208631) to A.J. Publisher Copyright: © 2015 Elsevier Ltd. All rights reserved.Integrins are critical for barrier epithelial architecture. Integrin loss in vertebrate skin leads to blistering and wound healing defects. However, how integrins and associated proteins maintain the regular morphology of epithelia is not well understood. We found that targeted knockdown of the integrin focal adhesion (FA) complex components β-integrin, PINCH, and integrin-linked kinase (ILK) caused formation of multinucleate epidermal cells within the Drosophila larval epidermis. This phenotype was specific to the integrin FA complex and not due to secondary effects on polarity or junctional structures. The multinucleate cells resembled the syncytia caused by physical wounding. Live imaging of wound-induced syncytium formation in the pupal epidermis suggested direct membrane breakdown leading to cell-cell fusion and consequent mixing of cytoplasmic contents. Activation of Jun N-terminal kinase (JNK) signaling, which occurs upon wounding, also correlated with syncytium formation induced by PINCH knockdown. Further, ectopic JNK activation directly caused epidermal syncytium formation. No mode of syncytium formation, including that induced by wounding, genetic loss of FA proteins, or local JNK hyperactivation, involved misregulation of mitosis or apoptosis. Finally, the mechanism of epidermal syncytium formation following JNK hyperactivation and wounding appeared to be direct disassembly of FA complexes. In conclusion, the loss-of-function phenotype of integrin FA components in the larval epidermis resembles a wound. Integrin FA loss in mouse and human skin also causes a wound-like appearance. Our results reveal a novel and unexpected role for proper integrin-based adhesion in suppressing larval epidermal cell-cell fusion - a role that may be conserved in other epithelia.publishersversionpublishe

    Motion frozen 18F-FDG cardiac PET

    Get PDF
    BackgroundPET reconstruction incorporating spatially variant 3D Point Spread Function (PSF) improves contrast and image resolution. "Cardiac Motion Frozen" (CMF) processing eliminates the influence of cardiac motion in static summed images. We have evaluated the combined use of CMF- and PSF-based reconstruction for high-resolution cardiac PET.MethodsStatic and 16-bin ECG-gated images of 20 patients referred for (18)F-FDG myocardial viability scans were obtained on a Siemens Biograph-64. CMF was applied to the gated images reconstructed with PSF. Myocardium to blood contrast, maximum left ventricle (LV) counts to defect contrast, contrast-to-noise (CNR) and wall thickness with standard reconstruction (2D-AWOSEM), PSF, ED-gated PSF, and CMF-PSF were compared.ResultsThe measured wall thickness was 18.9 ± 5.2 mm for 2D-AWOSEM, 16.6 ± 4.5 mm for PSF, and 13.8 ± 3.9 mm for CMF-PSF reconstructed images (all P < .05). The CMF-PSF myocardium to blood and maximum LV counts to defect contrasts (5.7 ± 2.7, 10.0 ± 5.7) were higher than for 2D-AWOSEM (3.5 ± 1.4, 6.5 ± 3.1) and for PSF (3.9 ± 1.7, 7.7 ± 3.7) (CMF vs all other, P < .05). The CNR for CMF-PSF (26.3 ± 17.5) was comparable to PSF (29.1 ± 18.3), but higher than for ED-gated dataset (13.7 ± 8.8, P < .05).ConclusionCombined CMF-PSF reconstruction increased myocardium to blood contrast, maximum LV counts to defect contrast and maintained equivalent noise when compared to static summed 2D-AWOSEM and PSF reconstruction

    Exclusive neuronal expression of SUCLA2 in the human brain

    Get PDF
    SUCLA2 encodes the ATP-forming subunit (A-SUCL-) of succinyl-CoA ligase, an enzyme of the citric acid cycle. Mutations in SUCLA2 lead to a mitochondrial disorder manifesting as encephalomyopathy with dystonia, deafness and lesions in the basal ganglia. Despite the distinct brain pathology associated with SUCLA2 mutations, the precise localization of SUCLA2 protein has never been investigated. Here we show that immunoreactivity of A-SUCL- in surgical human cortical tissue samples was present exclusively in neurons, identified by their morphology and visualized by double labeling with a fluorescent Nissl dye. A-SUCL- immunoreactivity co-localized >99% with that of the d subunit of the mitochondrial F0-F1 ATP synthase. Specificity of the anti-A-SUCL- antiserum was verified by the absence of labeling in fibroblasts from a patient with a complete deletion of SUCLA2. A-SUCL- immunoreactivity was absent in glial cells, identified by antibodies directed against the glial markers GFAP and S100. Furthermore, in situ hybridization histochemistry demonstrated that SUCLA2 mRNA was present in Nissl-labeled neurons but not glial cells labeled with S100. Immunoreactivity of the GTP-forming subunit (G-SUCL-) encoded by SUCLG2, or in situ hybridization histochemistry for SUCLG2 mRNA could not be demonstrated in either neurons or astrocytes. Western blotting of post mortem brain samples revealed minor G-SUCL- immunoreactivity that was however, not upregulated in samples obtained from diabetic versus non-diabetic patients, as has been described for murine brain. Our work establishes that SUCLA2 is expressed exclusively in neurons in the human cerebral cortex

    A de novo transcriptome of the Asian tiger mosquito, Aedes albopictus, to identify candidate transcripts for diapause preparation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many temperate insects survive the harsh conditions of winter by undergoing photoperiodic diapause, a pre-programmed developmental arrest initiated by short day lengths. Despite the well-established ecological significance of photoperiodic diapause, the molecular basis of this crucial adaptation remains largely unresolved. The Asian tiger mosquito, <it>Aedes albopictus </it>(Skuse), represents an outstanding emerging model to investigate the molecular basis of photoperiodic diapause in a well-defined ecological and evolutionary context. <it>Ae. albopictus </it>is a medically significant vector and is currently considered the most invasive mosquito in the world. Traits related to diapause appear to be important factors contributing to the rapid spread of this mosquito. To generate novel sequence information for this species, as well as to discover transcripts involved in diapause preparation, we sequenced the transcriptome of <it>Ae. albopictus </it>oocytes destined to become diapausing or non-diapausing pharate larvae.</p> <p>Results</p> <p>454 GS-FLX transcriptome sequencing yielded >1.1 million quality-filtered reads, which we assembled into 69,474 contigs (N50 = 1,009 bp). Our contig filtering approach, where we took advantage of strong sequence similarity to the fully sequenced genome of <it>Aedes aegypti</it>, as well as other reference organisms, resulted in 11,561 high-quality, conservative ESTs. Differential expression estimates based on normalized read counts revealed 57 genes with higher expression, and 257 with lower expression under diapause-inducing conditions. Analysis of expression by qPCR for 47 of these genes indicated a high correlation of expression levels between 454 sequence data and qPCR, but congruence of statistically significant differential expression was low. Seven genes identified as differentially expressed based on qPCR have putative functions that are consistent with the insect diapause syndrome; three genes have unknown function and represent novel candidates for the transcriptional basis of diapause.</p> <p>Conclusions</p> <p>Our transcriptome database provides a rich resource for the comparative genomics and functional genetics of <it>Ae. albopictus</it>, an invasive and medically important mosquito. Additionally, the identification of differentially expressed transcripts related to diapause enriches the limited knowledge base for the molecular basis of insect diapause, in particular for the preparatory stage. Finally, our analysis illustrates a useful approach that draws from a closely related reference genome to generate high-confidence ESTs in a non-model organism.</p

    Proteomic Comparison of Entamoeba histolytica and Entamoeba dispar and the Role of E. histolytica Alcohol Dehydrogenase 3 in Virulence

    Get PDF
    The protozoan intestinal parasite Entamoeba histolytica infects millions of people worldwide and is capable of causing amebic dysentery and amebic liver abscess. The closely related species Entamoeba dispar colonizes many more individuals, but this organism does not induce disease. To identify molecular differences between these two organisms that may account for their differential ability to cause disease in humans, we used two-dimensional gel-based (DIGE) proteomic analysis to compare whole cell lysates of E. histolytica and E. dispar. We observed 141 spots expressed at a substantially (>5-fold) higher level in E. histolytica HM-1∶IMSS than E. dispar and 189 spots showing the opposite pattern. Strikingly, 3 of 4 proteins consistently identified as different at a greater than 5-fold level between E. histolytica HM-1∶IMSS and E. dispar were identical to proteins recently identified as differentially expressed between E. histolytica HM-1∶IMSS and the reduced virulence strain E. histolytica Rahman. One of these was E. histolytica alcohol dehydrogenase 3 (EhADH3). We found that E. histolytica possesses a higher level of NADP-dependent alcohol dehydrogenase activity than E. dispar and that some EhADH3 can be localized to the surface of E. histolytica. Episomal overexpression of EhADH3 in E. histolytica trophozoites resulted in only subtle phenotypic differences in E. histolytica virulence in animal models of amebic colitis and amebic liver abscess, making it difficult to directly link EhADH3 levels to virulence differences between E. histolytica and less-pathogenic Entamoeba

    Classification and nomenclature of all human homeobox genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The homeobox genes are a large and diverse group of genes, many of which play important roles in the embryonic development of animals. Increasingly, homeobox genes are being compared between genomes in an attempt to understand the evolution of animal development. Despite their importance, the full diversity of human homeobox genes has not previously been described.</p> <p>Results</p> <p>We have identified all homeobox genes and pseudogenes in the euchromatic regions of the human genome, finding many unannotated, incorrectly annotated, unnamed, misnamed or misclassified genes and pseudogenes. We describe 300 human homeobox loci, which we divide into 235 probable functional genes and 65 probable pseudogenes. These totals include 3 genes with partial homeoboxes and 13 pseudogenes that lack homeoboxes but are clearly derived from homeobox genes. These figures exclude the repetitive <it>DUX1 </it>to <it>DUX5 </it>homeobox sequences of which we identified 35 probable pseudogenes, with many more expected in heterochromatic regions. Nomenclature is established for approximately 40 formerly unnamed loci, reflecting their evolutionary relationships to other loci in human and other species, and nomenclature revisions are proposed for around 30 other loci. We use a classification that recognizes 11 homeobox gene 'classes' subdivided into 102 homeobox gene 'families'.</p> <p>Conclusion</p> <p>We have conducted a comprehensive survey of homeobox genes and pseudogenes in the human genome, described many new loci, and revised the classification and nomenclature of homeobox genes. The classification scheme may be widely applicable to homeobox genes in other animal genomes and will facilitate comparative genomics of this important gene superclass.</p
    corecore