241 research outputs found

    Motivated proteins: a web application for studying small three-dimensional protein motifs

    Get PDF
    <b>BACKGROUND:</b> Small loop-shaped motifs are common constituents of the three-dimensional structure of proteins. Typically they comprise between three and seven amino acid residues, and are defined by a combination of dihedral angles and hydrogen bonding partners. The most abundant of these are alphabeta-motifs, asx-motifs, asx-turns, beta-bulges, beta-bulge loops, beta-turns, nests, niches, Schellmann loops, ST-motifs, ST-staples and ST-turns.We have constructed a database of such motifs from a range of high-quality protein structures and built a web application as a visual interface to this. <b>DESCRIPTION:</b> The web application, Motivated Proteins, provides access to these 12 motifs (with 48 sub-categories) in a database of over 400 representative proteins. Queries can be made for specific categories or sub-categories of motif, motifs in the vicinity of ligands, motifs which include part of an enzyme active site, overlapping motifs, or motifs which include a particular amino acid sequence. Individual proteins can be specified, or, where appropriate, motifs for all proteins listed. The results of queries are presented in textual form as an (X)HTML table, and may be saved as parsable plain text or XML. Motifs can be viewed and manipulated either individually or in the context of the protein in the Jmol applet structural viewer. Cartoons of the motifs imposed on a linear representation of protein secondary structure are also provided. Summary information for the motifs is available, as are histograms of amino acid distribution, and graphs of dihedral angles at individual positions in the motifs. <b>CONCLUSION:</b> Motivated Proteins is a publicly and freely accessible web application that enables protein scientists to study small three-dimensional motifs without requiring knowledge of either Structured Query Language or the underlying database schem

    Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation.

    Get PDF
    The normally soluble TAR DNA-binding protein 43 (TDP-43) is found aggregated both in reversible stress granules and in irreversible pathogenic amyloid. In TDP-43, the low-complexity domain (LCD) is believed to be involved in both types of aggregation. To uncover the structural origins of these two modes of β-sheet-rich aggregation, we have determined ten structures of segments of the LCD of human TDP-43. Six of these segments form steric zippers characteristic of the spines of pathogenic amyloid fibrils; four others form LARKS, the labile amyloid-like interactions characteristic of protein hydrogels and proteins found in membraneless organelles, including stress granules. Supporting a hypothetical pathway from reversible to irreversible amyloid aggregation, we found that familial ALS variants of TDP-43 convert LARKS to irreversible aggregates. Our structures suggest how TDP-43 adopts both reversible and irreversible β-sheet aggregates and the role of mutation in the possible transition of reversible to irreversible pathogenic aggregation

    MSH3 polymorphisms and protein levels affect CAG repeat instability in huntington's disease mice

    Get PDF
    Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)~100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases

    I-TASSER server for protein 3D structure prediction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prediction of 3-dimensional protein structures from amino acid sequences represents one of the most important problems in computational structural biology. The community-wide Critical Assessment of Structure Prediction (CASP) experiments have been designed to obtain an objective assessment of the state-of-the-art of the field, where I-TASSER was ranked as the best method in the server section of the recent 7th CASP experiment. Our laboratory has since then received numerous requests about the public availability of the I-TASSER algorithm and the usage of the I-TASSER predictions.</p> <p>Results</p> <p>An on-line version of I-TASSER is developed at the KU Center for Bioinformatics which has generated protein structure predictions for thousands of modeling requests from more than 35 countries. A scoring function (C-score) based on the relative clustering structural density and the consensus significance score of multiple threading templates is introduced to estimate the accuracy of the I-TASSER predictions. A large-scale benchmark test demonstrates a strong correlation between the C-score and the TM-score (a structural similarity measurement with values in [0, 1]) of the first models with a correlation coefficient of 0.91. Using a C-score cutoff > -1.5 for the models of correct topology, both false positive and false negative rates are below 0.1. Combining C-score and protein length, the accuracy of the I-TASSER models can be predicted with an average error of 0.08 for TM-score and 2 Ă… for RMSD.</p> <p>Conclusion</p> <p>The I-TASSER server has been developed to generate automated full-length 3D protein structural predictions where the benchmarked scoring system helps users to obtain quantitative assessments of the I-TASSER models. The output of the I-TASSER server for each query includes up to five full-length models, the confidence score, the estimated TM-score and RMSD, and the standard deviation of the estimations. The I-TASSER server is freely available to the academic community at <url>http://zhang.bioinformatics.ku.edu/I-TASSER</url>.</p

    The Crystal Structure of PPIL1 Bound to Cyclosporine A Suggests a Binding Mode for a Linear Epitope of the SKIP Protein

    Get PDF
    BACKGROUND: The removal of introns from pre-mRNA is carried out by a large macromolecular machine called the spliceosome. The peptidyl-prolyl cis/trans isomerase PPIL1 is a component of the human spliceosome and binds to the spliceosomal SKIP protein via a binding site distinct from its active site. PRINCIPAL FINDINGS: Here, we have studied the PPIL1 protein and its interaction with SKIP biochemically and by X-ray crystallography. A minimal linear binding epitope derived from the SKIP protein could be determined using a peptide array. A 36-residue region of SKIP centred on an eight-residue epitope suffices to bind PPIL1 in pull-down experiments. The crystal structure of PPIL1 in complex with the inhibitor cyclosporine A (CsA) was obtained at a resolution of 1.15 A and exhibited two bound Cd(2+) ions that enabled SAD phasing. PPIL1 residues that have previously been implicated in binding of SKIP are involved in the coordination of Cd(2+) ions in the present crystal structure. Employing the present crystal structure, the determined minimal binding epitope and previously published NMR data, a molecular docking study was performed. In the docked model of the PPIL1.SKIP interaction, a proline residue of SKIP is buried in a hydrophobic pocket of PPIL1. This hydrophobic contact is encircled by several hydrogen bonds between the SKIP peptide and PPIL1. CONCLUSION: We characterized a short, linear epitope of SKIP that is sufficient to bind the PPIL1 protein. Our data indicate that this SKIP peptide could function in recruiting PPIL1 into the core of the spliceosome. We present a molecular model for the binding mode of SKIP to PPIL1 which emphasizes the versatility of cyclophilin-type PPIases to engage in additional interactions with other proteins apart from active site contacts despite their limited surface area

    Evidence for a Two-Metal-Ion Mechanism in the Cytidyltransferase KdsB, an Enzyme Involved in Lipopolysaccharide Biosynthesis

    Get PDF
    Lipopolysaccharide (LPS) is located on the surface of Gram-negative bacteria and is responsible for maintaining outer membrane stability, which is a prerequisite for cell survival. Furthermore, it represents an important barrier against hostile environmental factors such as antimicrobial peptides and the complement cascade during Gram-negative infections. The sugar 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) is an integral part of LPS and plays a key role in LPS functionality. Prior to its incorporation into the LPS molecule, Kdo has to be activated by the CMP-Kdo synthetase (CKS). Based on the presence of a single Mg2+ ion in the active site, detailed models of the reaction mechanism of CKS have been developed previously. Recently, a two-metal-ion hypothesis suggested the involvement of two Mg2+ ions in Kdo activation. To further investigate the mechanistic aspects of Kdo activation, we kinetically characterized the CKS from the hyperthermophilic organism Aquifex aeolicus. In addition, we determined the crystal structure of this enzyme at a resolution of 2.10 Ă… and provide evidence that two Mg2+ ions are part of the active site of the enzyme

    Discrete molecular dynamics can predict helical prestructured motifs in disordered proteins.

    Get PDF
    Intrinsically disordered proteins (IDPs) lack a stable tertiary structure, but their short binding regions termed Pre-Structured Motifs (PreSMo) can form transient secondary structure elements in solution. Although disordered proteins are crucial in many biological processes and designing strategies to modulate their function is highly important, both experimental and computational tools to describe their conformational ensembles and the initial steps of folding are sparse. Here we report that discrete molecular dynamics (DMD) simulations combined with replica exchange (RX) method efficiently samples the conformational space and detects regions populating alpha-helical conformational states in disordered protein regions. While the available computational methods predict secondary structural propensities in IDPs based on the observation of protein-protein interactions, our ab initio method rests on physical principles of protein folding and dynamics. We show that RX-DMD predicts alpha-PreSMos with high confidence confirmed by comparison to experimental NMR data. Moreover, the method also can dissect alpha-PreSMos in close vicinity to each other and indicate helix stability. Importantly, simulations with disordered regions forming helices in X-ray structures of complexes indicate that a preformed helix is frequently the binding element itself, while in other cases it may have a role in initiating the binding process. Our results indicate that RX-DMD provides a breakthrough in the structural and dynamical characterization of disordered proteins by generating the structural ensembles of IDPs even when experimental data are not available

    Detection and characterization of 3D-signature phosphorylation site motifs and their contribution towards improved phosphorylation site prediction in proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phosphorylation of proteins plays a crucial role in the regulation and activation of metabolic and signaling pathways and constitutes an important target for pharmaceutical intervention. Central to the phosphorylation process is the recognition of specific target sites by protein kinases followed by the covalent attachment of phosphate groups to the amino acids serine, threonine, or tyrosine. The experimental identification as well as computational prediction of phosphorylation sites (P-sites) has proved to be a challenging problem. Computational methods have focused primarily on extracting predictive features from the local, one-dimensional sequence information surrounding phosphorylation sites.</p> <p>Results</p> <p>We characterized the spatial context of phosphorylation sites and assessed its usability for improved phosphorylation site predictions. We identified 750 non-redundant, experimentally verified sites with three-dimensional (3D) structural information available in the protein data bank (PDB) and grouped them according to their respective kinase family. We studied the spatial distribution of amino acids around phosphorserines, phosphothreonines, and phosphotyrosines to extract signature 3D-profiles. Characteristic spatial distributions of amino acid residue types around phosphorylation sites were indeed discernable, especially when kinase-family-specific target sites were analyzed. To test the added value of using spatial information for the computational prediction of phosphorylation sites, Support Vector Machines were applied using both sequence as well as structural information. When compared to sequence-only based prediction methods, a small but consistent performance improvement was obtained when the prediction was informed by 3D-context information.</p> <p>Conclusion</p> <p>While local one-dimensional amino acid sequence information was observed to harbor most of the discriminatory power, spatial context information was identified as relevant for the recognition of kinases and their cognate target sites and can be used for an improved prediction of phosphorylation sites. A web-based service (Phos3D) implementing the developed structure-based P-site prediction method has been made available at <url>http://phos3d.mpimp-golm.mpg.de</url>.</p

    A half-site multimeric enzyme achieves its cooperativity without conformational changes

    Get PDF
    Cooperativity is a feature many multimeric proteins use to control activity. Here we show that the bacterial heptose isomerase GmhA displays homotropic positive and negative cooperativity among its four protomers. Most similar proteins achieve this through conformational changes: GmhA instead employs a delicate network of hydrogen bonds, and couples pairs of active sites controlled by a unique water channel. This network apparently raises the Lewis acidity of the catalytic zinc, thus increasing the activity at one active site at the cost of preventing substrate from adopting a reactive conformation at the paired negatively cooperative site – a “half-site” behavior. Our study establishes the principle that multimeric enzymes can exploit this cooperativity without conformational changes to maximize their catalytic power and control. More broadly, this subtlety by which enzymes regulate functions could be used to explore new inhibitor design strategies

    Interrupting peptidoglycan deacetylation during Bdellovibrio predator-prey interaction prevents ultimate destruction of prey wall, liberating bacterial-ghosts

    Get PDF
    The peptidoglycan wall, located in the periplasm between the inner and outer membranes of the cell envelope in Gram-negative bacteria, maintains cell shape and endows osmotic robustness. Predatory Bdellovibrio bacteria invade the periplasm of other bacterial prey cells, usually crossing the peptidoglycan layer, forming transient structures called bdelloplasts within which the predators replicate. Prey peptidoglycan remains intact for several hours, but is modified and then degraded by predators escaping. Here we show predation is altered by deleting two Bdellovibrio N-acetylglucosamine (GlcNAc) deacetylases, one of which we show to have a unique two domain structure with a novel regulatory-”plug”. Deleting the deacetylases limits peptidoglycan degradation and rounded prey cell “ghosts” persist after mutant-predator exit. Mutant predators can replicate unusually in the periplasmic region between the peptidoglycan wall and the outer membrane rather than between wall and inner-membrane, yet still obtain nutrients from the prey cytoplasm. Deleting two further genes encoding DacB/PBP4 family proteins, known to decrosslink and round prey peptidoglycan, results in a quadruple mutant Bdellovibrio which leaves prey-shaped ghosts upon predation. The resultant bacterial ghosts contain cytoplasmic membrane within bacteria-shaped peptidoglycan surrounded by outer membrane material which could have promise as “bacterial skeletons” for housing artificial chromosomes
    • …
    corecore