90 research outputs found
Flow in linearly sheared two dimensional foams: from bubble to bulk scale
We probe the flow of two dimensional foams, consisting of a monolayer of
bubbles sandwiched between a liquid bath and glass plate, as a function of
driving rate, packing fraction and degree of disorder. First, we find that
bidisperse, disordered foams exhibit strongly rate dependent and inhomogeneous
(shear banded) velocity profiles, while monodisperse, ordered foams are also
shear banded, but essentially rate independent. Second, we introduce a simple
model based on balancing the averaged drag forces between the bubbles and the
top plate and the averaged bubble-bubble drag forces. This model captures the
observed rate dependent flows, and the rate independent flows. Third, we
perform independent rheological measurements, both for ordered and disordered
systems, and find these to be fully consistent with the scaling forms of the
drag forces assumed in the simple model, and we see that disorder modifies the
scaling. Fourth, we vary the packing fraction of the foam over a
substantial range, and find that the flow profiles become increasingly shear
banded when the foam is made wetter. Surprisingly, our model describes flow
profiles and rate dependence over the whole range of packing fractions with the
same power law exponents -- only a dimensionless number which measures the
ratio of the pre-factors of the viscous drag laws is seen to vary with packing
fraction. We find that , where , corresponding to the 2d jamming density, and suggest that this scaling
follows from the geometry of the deformed facets between bubbles in contact.
Overall, our work suggests a route to rationalize aspects of the ubiquitous
Herschel-Bulkley (power law) rheology observed in a wide range of disordered
materials.Comment: 16 pages, 14 figures, submitted to Phys. Rev. E. High quality version
available at: http://www.physics.leidenuniv.nl/sections/cm/gr
An elasto-visco-plastic model for immortal foams or emulsions
A variety of complex fluids consist in soft, round objects (foams, emulsions,
assemblies of copolymer micelles or of multilamellar vesicles -- also known as
onions). Their dense packing induces a slight deviation from their prefered
circular or spherical shape. As a frustrated assembly of interacting bodies,
such a material evolves from one conformation to another through a succession
of discrete, topological events driven by finite external forces. As a result,
the material exhibits a finite yield threshold. The individual objects usually
evolve spontaneously (colloidal diffusion, object coalescence, molecular
diffusion), and the material properties under low or vanishing stress may alter
with time, a phenomenon known as aging. We neglect such effects to address the
simpler behaviour of (uncommon) immortal fluids: we construct a minimal, fully
tensorial, rheological model, equivalent to the (scalar) Bingham model.
Importantly, the model consistently describes the ability of such soft
materials to deform substantially in the elastic regime (be it compressible or
not) before they undergo (incompressible) plastic creep -- or viscous flow
under even higher stresses.Comment: 69 pages, 29 figure
Memory of the Unjamming Transition during Cyclic Tiltings of a Granular Pile
Discrete numerical simulations are performed to study the evolution of the
micro-structure and the response of a granular packing during successive
loading-unloading cycles, consisting of quasi-static rotations in the gravity
field between opposite inclination angles. We show that internal variables,
e.g., stress and fabric of the pile, exhibit hysteresis during these cycles due
to the exploration of different metastable configurations. Interestingly, the
hysteretic behaviour of the pile strongly depends on the maximal inclination of
the cycles, giving evidence of the irreversible modifications of the pile state
occurring close to the unjamming transition. More specifically, we show that
for cycles with maximal inclination larger than the repose angle, the weak
contact network carries the memory of the unjamming transition. These results
demonstrate the relevance of a two-phases description -strong and weak contact
networks- for a granular system, as soon as it has approached the unjamming
transition.Comment: 13 pages, 15 figures, soumis \`{a} Phys. Rev.
Experimental evidence of ageing and slow restoration of the weak-contact configuration in tilted 3D granular packings
Granular packings slowly driven towards their instability threshold are
studied using a digital imaging technique as well as a nonlinear acoustic
method. The former method allows us to study grain rearrangements on the
surface during the tilting and the latter enables to selectively probe the
modifications of the weak-contact fraction in the material bulk. Gradual ageing
of both the surface activity and the weak-contact reconfigurations is observed
as a result of repeated tilt cycles up to a given angle smaller than the angle
of avalanche. For an aged configuration reached after several consecutive tilt
cycles, abrupt resumption of the on-surface activity and of the weak-contact
rearrangements occurs when the packing is subsequently inclined beyond the
previous maximal tilting angle. This behavior is compared with literature
results from numerical simulations of inclined 2D packings. It is also found
that the aged weak-contact configurations exhibit spontaneous restoration
towards the initial state if the packing remains at rest for tens of minutes.
When the packing is titled forth and back between zero and near-critical
angles, instead of ageing, the weak-contact configuration exhibits "internal
weak-contact avalanches" in the vicinity of both the near-critical and zero
angles. By contrast, the stronger-contact skeleton remains stable
Islands of conformational stability for Filopodia
Filopodia are long, thin protrusions formed when bundles of fibers grow outwardly from a cell surface while remaining closed in a membrane tube. We study the subtle issue of the mechanical stability of such filopodia and how this depends on the deformation of the membrane that arises when the fiber bundle adopts a helical configuration. We calculate the ground state conformation of such filopodia, taking into account the steric interaction between the membrane and the enclosed semiflexible fiber bundle. For typical filopodia we find that a minimum number of fibers is required for filopodium stability. Our calculation elucidates how experimentally observed filopodia can obviate the classical Euler buckling condition and remain stable up to several tens of . We briefly discuss how experimental observation of the results obtained in this work for the helical-like deformations of enclosing membrane tubes in filopodia could possibly be observed in the acrosomal reactions of the sea cucumber Thyone, and the horseshoe crab Limulus. Any realistic future theories for filopodium stability are likely to rely on an accurate treatment of such steric effects, as analysed in this work
Leader Cells Define Directionality of Trunk, but Not Cranial, Neural Crest Cell Migration.
Collective cell migration is fundamental for life and a hallmark of cancer. Neural crest (NC) cells migrate collectively, but the mechanisms governing this process remain controversial. Previous analyses in Xenopus indicate that cranial NC (CNC) cells are a homogeneous population relying on cell-cell interactions for directional migration, while chick embryo analyses suggest a heterogeneous population with leader cells instructing directionality. Our data in chick and zebrafish embryos show that CNC cells do not require leader cells for migration and all cells present similar migratory capacities. In contrast, laser ablation of trunk NC (TNC) cells shows that leader cells direct movement and cell-cell contacts are required for migration. Moreover, leader and follower identities are acquired before the initiation of migration and remain fixed thereafter. Thus, two distinct mechanisms establish the directionality of CNC cells and TNC cells. This implies the existence of multiple molecular mechanisms for collective cell migration.D11I1096 Fondo de Fomento al Desarrollo Científico y TecnológicoThis is the final version of the article. It first appeared from Cell Press via httsp://doi.org/10.1016/j.celrep.2016.04.06
Microscopic elasticity of complex systems
Lecture Notes for the Erice Summer School 2005 Computer Simulations in
Condensed Matter: from Materials to Chemical Biology. Perspectives in
celebration of the 65th Birthday of Mike Klein organized by Kurt Binder,
Giovanni Ciccotti and Mauro Ferrari
Dense active matter model of motion patterns in confluent cell monolayers
Epithelial cell monolayers show remarkable displacement and velocity
correlations over distances of ten or more cell sizes that are reminiscent of
supercooled liquids and active nematics. We show that many observed features
can be described within the framework of dense active matter, and argue that
persistent uncoordinated cell motility coupled to the collective elastic modes
of the cell sheet is sufficient to produce swirl-like correlations. We obtain
this result using both continuum active linear elasticity and a normal modes
formalism, and validate analytical predictions with numerical simulations of
two agent-based cell models, soft elastic particles and the self-propelled
Voronoi model together with in-vitro experiments of confluent corneal
epithelial cell sheets. Simulations and normal mode analysis perfectly match
when tissue-level reorganisation occurs on times longer than the persistence
time of cell motility. Our analytical model quantitatively matches measured
velocity correlation functions over more than a decade with a single fitting
parameter.Comment: updated version accepted for publication in Nat. Com
Shear-banding in a lyotropic lamellar phase, Part 1: Time-averaged velocity profiles
Using velocity profile measurements based on dynamic light scattering and
coupled to structural and rheological measurements in a Couette cell, we
present evidences for a shear-banding scenario in the shear flow of the onion
texture of a lyotropic lamellar phase. Time-averaged measurements clearly show
the presence of structural shear-banding in the vicinity of a shear-induced
transition, associated to the nucleation and growth of a highly sheared band in
the flow. Our experiments also reveal the presence of slip at the walls of the
Couette cell. Using a simple mechanical approach, we demonstrate that our data
confirms the classical assumption of the shear-banding picture, in which the
interface between bands lies at a given stress . We also outline
the presence of large temporal fluctuations of the flow field, which are the
subject of the second part of this paper [Salmon {\it et al.}, submitted to
Phys. Rev. E]
Colloquium: Mechanical formalisms for tissue dynamics
The understanding of morphogenesis in living organisms has been renewed by
tremendous progressin experimental techniques that provide access to
cell-scale, quantitative information both on theshapes of cells within tissues
and on the genes being expressed. This information suggests that
ourunderstanding of the respective contributions of gene expression and
mechanics, and of their crucialentanglement, will soon leap forward.
Biomechanics increasingly benefits from models, which assistthe design and
interpretation of experiments, point out the main ingredients and assumptions,
andultimately lead to predictions. The newly accessible local information thus
calls for a reflectionon how to select suitable classes of mechanical models.
We review both mechanical ingredientssuggested by the current knowledge of
tissue behaviour, and modelling methods that can helpgenerate a rheological
diagram or a constitutive equation. We distinguish cell scale ("intra-cell")and
tissue scale ("inter-cell") contributions. We recall the mathematical framework
developpedfor continuum materials and explain how to transform a constitutive
equation into a set of partialdifferential equations amenable to numerical
resolution. We show that when plastic behaviour isrelevant, the dissipation
function formalism appears appropriate to generate constitutive equations;its
variational nature facilitates numerical implementation, and we discuss
adaptations needed in thecase of large deformations. The present article
gathers theoretical methods that can readily enhancethe significance of the
data to be extracted from recent or future high throughput
biomechanicalexperiments.Comment: 33 pages, 20 figures. This version (26 Sept. 2015) contains a few
corrections to the published version, all in Appendix D.2 devoted to large
deformation
- …