10 research outputs found

    CNS-PNETs with C19MC amplification and/or LIN28 expression comprise a distinct histogenetic diagnostic and therapeutic entity

    Get PDF
    Amplification of the C19MC oncogenic miRNA cluster and high LIN28 expression has been linked to a distinctly aggressive group of cerebral CNS-PNETs (group 1 CNS-PNETs) arising in young children. In this study, we sought to evaluate the diagnostic specificity of C19MC and LIN28, and the clinical and biological spectra of C19MC amplified and/or LIN28+ CNS-PNETs. We interrogated 450 pediatric brain tumors using FISH and IHC analyses and demonstrate that C19MC alteration is restricted to a sub-group of CNS-PNETs with high LIN28 expression; however, LIN28 immunopositivity was not exclusive to CNS-PNETs but was also detected in a proportion of other malignant pediatric brain tumors including rhabdoid brain tumors and malignant gliomas. C19MC amplified/LIN28+ group 1 CNS-PNETs arose predominantly in children <4 years old; a majority arose in the cerebrum but 24 % (13/54) of tumors had extra-cerebral origins. Notably, group 1 CNS-PNETs encompassed several histologic classes including embryonal tumor with abundant neuropil and true rosettes (ETANTR), medulloepithelioma, ependymoblastoma and CNS-PNETs with variable differentiation. Strikingly, gene expression and methylation profiling analyses revealed a common molecular signature enriched for primitive neural features, high LIN28/LIN28B and DNMT3B expression for all group 1 CNS-PNETs regardless of location or tumor histology. Our collective findings suggest that current known histologic categories of CNS-PNETs which include ETANTRs, medulloepitheliomas, ependymoblastomas in various CNS locations, comprise a common molecular and diagnostic entity and identify inhibitors of the LIN28/let7/PI3K/mTOR axis and DNMT3B as promising therapeutics for this distinct histogenetic entity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00401-014-1291-1) contains supplementary material, which is available to authorized users

    Outcome of patients with hemoglobinopathies given either cord blood or bone marrow transplantation from an HLA-identical sibling

    No full text
    We analyzed the outcomes of 485 patients with thalassemia major (TM) or sickle cell disease (SCD) receiving HLA-identical sibling cord blood transplantation (CBT, n = 96) or bone marrow transplantation (BMT, n = 389). Compared with patients given BMT, CBT recipients were significantly younger (median age 6 vs 8 years, P = .02), and were treated more recently (median year 2001 vs 1999, P < .01). A higher proportion of patients with TM belonging to classes II-III of the Pesaro classification received BMT (44%) compared with CBT (39%, P < .01). In comparison with patients receiving BMT (n = 259, TM; n = 130, SCD), those given CBT (n = 66, TM; n = 30, SCD) had slower neutrophil recovery, less acute graft-versus-host disease (GVHD) and none had extensive chronic GVHD. With a median follow-up of 70 months, the 6-year overall survival was 95% and 97% after BMT and CBT, respectively (P = .92). The 6-year disease-free survival (DFS) was 86% and 80% in TM patients after BMT and CBT, respectively, whereas DFS in SCD patients was 92% and 90%, respectively. The cell dose infused did not influence outcome of patients given CBT. In multivariate analysis, DFS did not differ between CBT and BMT recipients. Patients with TM or SCD have excellent outcomes after both HLA-identical sibling CBT and BMT

    Vemurafenib for Refractory Multisystem Langerhans Cell Histiocytosis in Children: An International Observational Study

    No full text
    International audiencePURPOSE:Off-label use of vemurafenib (VMF) to treat BRAFV600E mutation-positive, refractory, childhood Langerhans cell histiocytosis (LCH) was evaluated.PATIENTS AND METHODS:Fifty-four patients from 12 countries took VMF 20 mg/kg/d. They were classified according to risk organ involvement: liver, spleen, and/or blood cytopenia. The main evaluation criteria were adverse events (Common Terminology Criteria for Adverse Events [version 4.3]) and therapeutic responses according to Disease Activity Score.RESULTS:LCH extent was distributed as follows: 44 with positive and 10 with negative risk organ involvement. Median age at diagnosis was 0.9 years (range, 0.1 to 6.5 years). Median age at VMF initiation was 1.8 years (range, 0.18 to 14 years), with a median follow-up of 22 months (range, 4.3 to 57 months), whereas median treatment duration was 13.9 months (for 855 patient-months). At 8 weeks, 38 complete responses and 16 partial responses had been achieved, with the median Disease Activity Score decreasing from 7 at diagnosis to 0 (P < .001). Skin rash, the most frequent adverse event, affected 74% of patients. No secondary skin cancer was observed. Therapeutic plasma VMF concentrations (range, 10 to 20 mg/L) seemed to be safe and effective. VMF discontinuation for 30 patients led to 24 LCH reactivations. The blood BRAFV600E allele load, assessed as circulating cell-free DNA, decreased after starting VMF but remained positive (median, 3.6% at diagnosis, and 1.6% during VMF treatment; P < .001) and was associated with a higher risk of reactivation at VMF discontinuation. None of the various empirical therapies (hematopoietic stem-cell transplantation, cladribine and cytarabine, anti-MEK agent, vinblastine, etc) used for maintenance could eradicate the BRAFV600E clone.CONCLUSION:VMF seemed safe and effective in children with refractory BRAFV600E-positive LCH. Additional studies are needed to find effective maintenance therapy approaches

    Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia

    No full text
    International audienceThe β-haemoglobinopathies are the most prevalent inherited disorders worldwide. Gene therapy of β-thalassaemia is particularly challenging given the requirement for massive haemoglobin production in a lineage-specific manner and the lack of selective advantage for corrected haematopoietic stem cells. Compound βE^E0^0-thalassaemia is the most common form of severe thalassaemia in southeast Asian countries and their diasporas1, 2. The βE^E-globin allele bears a point mutation that causes alternative splicing. The abnormally spliced form is non-coding, whereas the correctly spliced messenger RNA expresses a mutated βE^E-globin with partial instability. When this is compounded with a non-functional β0^0 allele, a profound decrease in β-globin synthesis results, and approximately half of βE^E0^0-thalassaemia patients are transfusion-dependent. The only available curative therapy is allogeneic haematopoietic stem cell transplantation, although most patients do not have a human-leukocyte-antigen-matched, geno-identical donor, and those who do still risk rejection or graft-versus-host disease. Here we show that, 33 months after lentiviral β-globin gene transfer, an adult patient with severe βE^E0^0-thalassaemia dependent on monthly transfusions since early childhood has become transfusion independent for the past 21 months. Blood haemoglobin is maintained between 9 and 10 g dl1^{−1}, of which one-third contains vector-encoded β-globin. Most of the therapeutic benefit results from a dominant, myeloid-biased cell clone, in which the integrated vector causes transcriptional activation of HMGA2HMGA2 in erythroid cells with further increased expression of a truncated HMGA2HMGA2 mRNA insensitive to degradation by let-7 microRNAs. The clonal dominance that accompanies therapeutic efficacy may be coincidental and stochastic or result from a hitherto benign cell expansion caused by dysregulation of the HMGA2HMGA2 gene in stem/progenitor cell
    corecore