1,077 research outputs found

    Restorative sleep predicts the resolution of chronic widespread pain: results from the EPIFUND study

    Get PDF
    PublishedJournal ArticleMulticenter StudyResearch Support, Non-U.S. Gov'tVersion of record of article published in Rheumatology (Oxford). 2008 Dec; 47(12): 1809–1813. Published online 2008 Oct 7. doi: 10.1093/rheumatology/ken389OBJECTIVES: Poor sleep is associated with chronic widespread pain (CWP). Conversely, good-quality sleep may play a role in the resolution of pain symptoms. Sleep is a multidimensional construct, comprising a number of diverse components. The aims of the current study were to examine the hypotheses that: (i) good sleep quality would predict the resolution of CWP, (ii) restorative sleep would predict the resolution of CWP and (iii) that these relationships would be independent of confounding psychological factors. METHODS: Subjects in a population-based prospective study completed a pain questionnaire at baseline from which subjects with CWP were identified. Baseline sleep was measured using the Estimation of Sleep Problems Scale which measures sleep onset, maintenance, early wakening and restorative sleep. The questionnaire also contained scales examining psychosocial status. Subjects were followed up 15 months later and pain status was assessed. RESULTS: A total of 1061 subjects reported CWP at baseline of whom 679 (75% of eligible subjects) responded at follow-up. Of those, a total of 300 (44%) no longer satisfied criteria for CWP. Univariate analysis revealed that three of the four sleep components were associated with the resolution of CWP: rapid sleep onset, odds ratio (OR) = 1.7, 95% CI 1.2, 2.5; absence of early wakening, OR = 1.6, 95% CI 1.1, 2.4; and restorative sleep, OR = 2.7, 95% CI 1.5, 4.8. After adjusting for the effect of psychosocial factors, which may have confounded the relationship, only restorative sleep (OR = 2.0, 95% CI 1.02, 3.8) was associated. CONCLUSIONS: Self-reported restorative sleep was independently associated with the resolution of CWP and return to musculoskeletal health.This study was funded by the Arthritis Research Campaign, Grant number: 1755

    Unraveling information about supranuclear-dense matter from the complete binary neutron star coalescence process using future gravitational-wave detector networks

    Full text link
    Gravitational waves provide us with an extraordinary tool to study the matter inside neutron stars. In particular, the postmerger signal probes an extreme temperature and density regime and will help reveal information about the equation of state of supranuclear-dense matter. Although current detectors are most sensitive to the signal emitted by binary neutron stars before the merger, the upgrades of existing detectors and the construction of the next generation of detectors will make postmerger detections feasible. For this purpose, we present a new analytical, frequency-domain model for the inspiral-merger-postmerger signal emitted by binary neutron stars systems. The inspiral and merger part of the signals are modeled with IMRPhenomD_NRTidalv2, and we describe the main emission peak of postmerger with a three-parameter Lorentzian, using two different approaches: one in which the Lorentzian parameters are kept free, and one in which we model them via quasi-universal relations. We test the performance of our new complete waveform model in parameter estimation analyses, studying simulated signals obtained from both our developed model and by injecting numerical relativity waveforms. We investigate the performance of different detector networks to determine the improvement that future detectors will bring to our analysis. We consider Advanced LIGO+ and Advanced Virgo+, KAGRA, and LIGO-India. We also study the possible impact of a detector with high sensitivity in the kilohertz band like NEMO, and finally we compare these results to the ones we obtain with third-generation detectors, the Einstein Telescope and the Cosmic Explorer.Comment: Published versio

    Parameterized tests of the strong-field dynamics of general relativity using gravitational wave signals from coalescing binary black holes: Fast likelihood calculations and sensitivity of the method

    Get PDF
    Thanks to the recent discoveries of gravitational wave signals from binary black hole mergers by Advanced Laser Interferometer Gravitational Wave Observatory and Advanced Virgo, the genuinely strong-field dynamics of spacetime can now be probed, allowing for stringent tests of general relativity (GR). One set of tests consists of allowing for parametrized deformations away from GR in the template waveform models and then constraining the size of the deviations, as was done for the detected signals in previous work. In this paper, we construct reduced-order quadratures so as to speed up likelihood calculations for parameter estimation on future events. Next, we explicitly demonstrate the robustness of the parametrized tests by showing that they will correctly indicate consistency with GR if the theory is valid. We also check to what extent deviations from GR can be constrained as information from an increasing number of detections is combined. Finally, we evaluate the sensitivity of the method to possible violations of GR.Comment: 19 pages, many figures. Matches PRD versio

    The minibrain kinase homolog, mbk-2, is required for spindle positioning and asymmetric cell division in early C. elegans embryos

    Get PDF
    AbstractIn the newly fertilized Caenorhabditis elegans zygote, cytoplasmic determinants become localized asymmetrically along the anterior–posterior (A–P) axis of the embryo. The mitotic apparatus then orients so as to cleave the embryo into anterior and posterior blastomeres that differ in both size and developmental potential. Here we describe a role for MBK-2, a member of the Dyrk family of protein kinases, in asymmetric cell division in C. elegans. In mbk-2 mutants, the initial mitotic spindle is misplaced and cytoplasmic factors, including the germline-specific protein PIE-1, are mislocalized. Our findings support a model in which MBK-2 down-regulates the katanin-related protein MEI-1 to control spindle positioning and acts through distinct, as yet unknown factors, to control the localization of cytoplasmic determinants. These findings in conjunction with work from Schizosaccharomyces pombe indicate a possible conserved role for Dyrk family kinases in the regulation of spindle placement during cell division

    A morphology-independent data analysis method for detecting and characterizing gravitational wave echoes

    Get PDF
    The ability to directly detect gravitational waves has enabled us to empirically probe the nature of ultracompact relativistic objects. Several alternatives to the black holes of classical general relativity have been proposed which do not have a horizon, in which case a newly formed object (e.g., as a result of binary merger) may emit echoes: bursts of gravitational radiation with varying amplitude and duration, but arriving at regular time intervals. Unlike in previous template-based approaches, we present a morphology-independent search method to find echoes in the data from gravitational wave detectors, based on a decomposition of the signal in terms of generalized wavelets consisting of multiple sine-Gaussians. The ability of the method to discriminate between echoes and instrumental noise is assessed by inserting into the noise two different signals: a train of sine-Gaussians, and an echoing signal from an extreme mass-ratio inspiral of a particle into a Schwarzschild vacuum spacetime, with reflective boundary conditions close to the horizon. We find that both types of signals are detectable for plausible signal-to-noise ratios in existing detectors and their near-future upgrades. Finally, we show how the algorithm can provide a characterization of the echoes in terms of the time between successive bursts, and damping and widening from one echo to the next

    Selection of Single-Stranded DNA Molecular Recognition Elements against Exotoxin A Using a Novel Decoy-SELEX Method and Sensitive Detection of Exotoxin A in Human Serum

    Get PDF
    Exotoxin A is one of the virulence factors of Pseudomonas aeruginosa, a bacterium that can cause infections resulting in adverse health outcomes and increased burden to health care systems. Current methods of diagnosing P. aeruginosa infections are time consuming and can require significant preparation of patient samples. This study utilized a novel variation of the Systematic Evolution of Ligand by Exponential Enrichment, Decoy-SELEX, to identify an Exotoxin A specific single-stranded DNA (ssDNA) molecular recognition element (MRE). Its emphasis is on increasing stringency in directing binding toward free target of interest and at the same time decreasing binding toward negative targets. A ssDNA MRE with specificity and affinity was identified after fourteen rounds of Decoy-SELEX. Utilizing surface plasmon resonance measurements, the determined equilibrium dissociation constant of the MRE is between 4.2 µM and 4.5 µM, and is highly selective for Exotoxin A over negative targets. A ssDNA MRE modified sandwich enzyme-linked immunosorbent assay (ELISA) has been developed and achieved sensitive detection of Exotoxin A at nanomolar concentrations in human serum. This study has demonstrated the proof-of-principle of using a ssDNA MRE as a clinical diagnostic tool

    Selection of Single-Stranded DNA Molecular Recognition Elements against Exotoxin A Using a Novel Decoy-SELEX Method and Sensitive Detection of Exotoxin A in Human Serum

    Get PDF
    Exotoxin A is one of the virulence factors of Pseudomonas aeruginosa, a bacterium that can cause infections resulting in adverse health outcomes and increased burden to health care systems. Current methods of diagnosing P. aeruginosa infections are time consuming and can require significant preparation of patient samples. This study utilized a novel variation of the Systematic Evolution of Ligand by Exponential Enrichment, Decoy-SELEX, to identify an Exotoxin A specific single-stranded DNA (ssDNA) molecular recognition element (MRE). Its emphasis is on increasing stringency in directing binding toward free target of interest and at the same time decreasing binding toward negative targets. A ssDNA MRE with specificity and affinity was identified after fourteen rounds of Decoy-SELEX. Utilizing surface plasmon resonance measurements, the determined equilibrium dissociation constant of the MRE is between 4.2 µM and 4.5 µM, and is highly selective for Exotoxin A over negative targets. A ssDNA MRE modified sandwich enzyme-linked immunosorbent assay (ELISA) has been developed and achieved sensitive detection of Exotoxin A at nanomolar concentrations in human serum. This study has demonstrated the proof-of-principle of using a ssDNA MRE as a clinical diagnostic tool

    Reliability Through Life of Internal Protection Devices in Small-Cell ABSL Batteries

    Get PDF
    This viewgraph presentation reviews a reliability analysis of small cell protection batteries. The contents include: 1) The s-p Topology; 2) Cell Level Protection Devices; 3) Battery Level Fault Protection; 4) Large Cell Comparison; and 5) Battery Level Testing and Results

    An Algorithm for Modelling Escalator Fixed Loss Energy for PHM and sustainable energy usage

    Full text link
    Prognostic Health Management (PHM) is designed to assess and monitor the health status of systems, anticipate the onset of potential failure, and prevent unplanned downtime. In recent decades, collecting massive amounts of real-time sensor data enabled condition monitoring (CM) and consequently, detection of abnormalities to support maintenance decision-making. Additionally, the utilization of PHM techniques can support energy sustainability efforts by optimizing energy usage and identifying opportunities for energy-saving measures. Escalators are efficient machines for transporting people and goods, and measuring energy consumption in time can facilitate PHM of escalators. Fixed loss energy, or no-load energy, of escalators denotes the energy consumption by an unloaded escalator. Fixed loss energy varies over time indicating varying operating conditions. In this paper, we propose to use escalators' fixed loss energy for PHM. We propose an approach to compute daily fixed loss energy based on energy consumption sensor data. The proposed approach is validated using a set of experimental data. The advantages and disadvantages of each approach are also presented, and recommendations are given. Finally, to illustrate PHM, we set up an EWMA chart for monitoring the fixed loss over time and demonstrate the potential in reducing energy costs associated with escalator operation
    • …
    corecore