36 research outputs found

    BCL10 is rarely mutated in human prostate carcinoma, small-cell lung cancer, head and neck tumours, renal carcinoma and sarcomas

    Get PDF
    We have used single-strand conformation polymorphism (SSCP) analysis to screen for mutations in the BCL 10 gene in 81 primary prostate carcinomas, 20 squamous cell cancers of the head and neck, 15 small-cell lung cancer cell lines, 24 renal carcinoma cell lines and 13 sarcoma cell lines. We failed to find evidence of somatically acquired mutations of the BCL10 gene suggesting that BCL 10 does not play a major role in the development of these malignancies

    Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding

    Get PDF
    We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics

    Equine penile squamous cell carcinoma: expression of biomarker proteins and EcPV2

    Get PDF
    Equine penile squamous cell carcinoma (EpSCC) is a relatively common cutaneous neoplasm with a poor prognosis. In this study, we aimed to determine the protein expression and colocalisation of FRA1, c-Myc, Cyclin D1, and MMP7 in normal (NT), tumour (T), hyperplastic epidermis and/or squamous papilloma (Hyp/Pap), poorly-differentiated (PDSCC), or well-differentiated (WDSCC) EpSCC using a tissue array approach. Further objectives were to correlate protein expression to (i) levels of inflammation, using a convolutional neural network (ii) equine papillomavirus 2 (EcPV2) infection, detected using PCR amplification. We found an increase in expression of FRA1 in EpSCC compared to NT samples. c-Myc expression was higher in Hyp/Pap and WDSCC but not PDSCC whereas MMP7 was reduced in WDSCC compared with NT. There was a significant increase in the global intersection coefficient (GIC) of FRA1 with MMP7, c-Myc, and Cyclin D1 in EpSCC. Conversely, GIC for MMP7 with c-Myc was reduced in EpSCC tissue. Inflammation was positively associated with EcPV2 infection in both NT and EpSCC but not Hyp/Pap. Changes in protein expression could be correlated with EcPV2 for Cyclin D1 and c-Myc. Our results evaluate novel biomarkers of EpSCC and a putative correlation between the expression of biomarkers, EcPV2 infection and inflammation

    Gene expression markers of tendon fibroblasts in normal and diseased tissue compared to monolayer and three dimensional culture systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a paucity of data regarding molecular markers that identify the phenotype of the tendon cell. This study aims to quantify gene expression markers that distinguish between tendon fibroblasts and other mesenchymal cells which may be used to investigate tenogenesis.</p> <p>Methods</p> <p>Expression levels for 12 genes representative of musculoskeletal tissues, including the proposed tendon progenitor marker scleraxis, relative to validated reference genes, were evaluated in matched samples of equine tendon (harvested from the superficial digital flexor tendon), cartilage and bone using quantitative PCR (qPCR). Expression levels of genes associated with tendon phenotype were then evaluated in healthy, including developmental, and diseased equine tendon tissue and in tendon fibroblasts maintained in both monolayer culture and in three dimensional (3D) collagen gels.</p> <p>Results</p> <p>Significantly increased expression of scleraxis was found in tendon compared with bone (P = 0.002) but not compared to cartilage. High levels of COL1A2 and scleraxis and low levels of tenascin-C were found to be most representative of adult tensional tendon phenotype. While, relative expression of scleraxis in developing mid-gestational tendon or in acute or chronically diseased tendon did not differ significantly from normal adult tendon, tenascin-C message was significantly upregulated in acutely injured equine tendon (P = 0.001). Relative scleraxis gene expression levels in tendon cell monolayer and 3D cultures were significantly lower than in normal adult tendon (P = 0.002, P = 0.02 respectively).</p> <p>Conclusion</p> <p>The findings of this study indicate that high expression of both COL1A2 and scleraxis, and low expression of tenascin-C is representative of a tensional tendon phenotype. The <it>in vitro </it>culture methods used in these experiments however, may not recapitulate the phenotype of normal tensional tendon fibroblasts in tissues as evidenced by gene expression.</p

    Leading Innovative Practice: Leadership Attributes in LEAP Practices.

    No full text
    Policy Points An onslaught of policies from the federal government, states, the insurance industry, and professional organizations continually requires primary care practices to make substantial changes; however, ineffective leadership at the practice level can impede the dissemination and scale-up of these policies. The inability of primary care practice leadership to respond to ongoing policy demands has resulted in moral distress and clinician burnout. Investments are needed to develop interventions and educational opportunities that target a broad array of leadership attributes. CONTEXT: Over the past several decades, health care in the United States has undergone substantial and rapid change. At the heart of this change is an assumption that a more robust primary care infrastructure helps achieve the quadruple aim of improved care, better patient experience, reduced cost, and improved work life of health care providers. Practice-level leadership is essential to succeed in this rapidly changing environment. Complex adaptive systems theory offers a lens for understanding important leadership attributes. METHODS: A review of the literature on leadership from a complex adaptive system perspective identified nine leadership attributes hypothesized to support practice change: motivating others to engage in change, managing abuse of power and social influence, assuring psychological safety, enhancing communication and information sharing, generating a learning organization, instilling a collective mind, cultivating teamwork, fostering emergent leaders, and encouraging boundary spanning. Through a secondary qualitative analysis, we applied these attributes to nine practices ranking high on both a practice learning and leadership scale from the Learning from Effective Ambulatory Practice (LEAP) project to see if and how these attributes manifest in high-performing innovative practices. FINDINGS: We found all nine attributes identified from the literature were evident and seemed important during a time of change and innovation. We identified two additional attributes-anticipating the future and developing formal processes-that we found to be important. Complexity science suggests a hypothesized developmental model in which some attributes are foundational and necessary for the emergence of others. CONCLUSIONS: Successful primary care practices exhibit a diversity of strong local leadership attributes. To meet the realities of a rapidly changing health care environment, training of current and future primary care leaders needs to be more comprehensive and move beyond motivating others and developing effective teams

    Neuroretinal alterations in the early stages of diabetic retinopathy in patients with type 2 diabetes mellitus

    No full text
    Purpose To study neuroretinal alterations in patients affected by type 2 diabetes with no diabetic retinopathy (DR) or mild nonproliferative diabetic retinopathy (NPDR) and without any sign of diabetic macular edema.Patients and methodsIn total, 150 type 2 diabetic patients with no (131 eyes) or mild NPDR (19 eyes) and 50 healthy controls were enrolled in our study. All underwent a complete ophthalmologic examination, including Spectral-Domain optical coherence tomography (SD-OCT). Ganglion cell-inner plexiform layer (GC-IPL) and retinal nerve fiber layer (RNFL) thickness values were calculated after automated segmentation of SD-OCT scans.ResultsMean best-corrected visual acuity was 0.0±0.0 LogMAR in all the groups. Mean GC-IPL thickness was 80.6±8.1 μm in diabetic patients and 85.3±9.9 μm in healthy controls, respectively (P=0.001). Moreover, evaluating the two different diabetic groups, GC-IPL thickness was 80.7±8.1 μm and 79.7±8.8 μm in no-DR and mild-NPDR group (P=0.001 and P=0.022 compared with healthy controls, respectively). Average RNFL thickness was 86.1±10.1 μm in diabetes patients and 91.2±7.3 μm in controls, respectively (P=0.003). RNFL thickness was 86.4±10.2 μm in no-DR group and 84.1±9.4 μm in mild-NPDR group (P=0.007 and P=0.017 compared with healthy controls, respectively).ConclusionWe demonstrated a significantly reduced GC-IPL and RNFL thickness values in both no-DR and mild-NPDR groups compared with healthy controls. These data confirmed neuroretinal alterations are early in diabetes, preceding microvascular damage
    corecore