42 research outputs found
UFASOMES: UNSATURATED FATTY ACID BASED VESICULAR DRUG DELIVERY SYSTEM
Various novel drug delivery systems have been developed encompassing several administration routes to deliver drugs at a rate decided as per the need of the body during the course of treatment and to achieve targeted therapy, also decreases undesirable side effects. Different types of vesicular drug delivery systems were developed, such as liposomes, niosomes, ufasomes etc. Ufasomes are unsaturated fatty acid vesicles which is a suspension of closed lipid bilayer formed from fatty acid and their ionized species having limited, narrow pH ranging from 7-9. Composition of fatty acid molecules is such that the hydrocarbon tails are pointed towards the inner core of the membrane and the carboxyl group are in touch with water. Stable ufasomes preparation mainly relies on appropriate choice of fatty acid, cholesterol quantity, range of the pH, buffer and lipoxygenase amount. Recent innovation provides very efficient features such as stability considerations, dynamic features and microscopic features of ufasomes. The article furthermore provides the difference between ufasomes with liposomes. For this review, the complete databases have been collected from various search engines such as researchgate, elsevier, pubmed, sciencedirect, google scholar, scopus etc., from the year 1965-2020 using the following keywords
Complex and shifting interactions of phytochromes regulate fruit development in tomato
Tomato fruit ripening is a complex metabolic process regulated by a genetical hierarchy. A subset of this process is also modulated by light-signaling, as mutants encoding negative regulators of phytochrome signal transduction, show higher accumulation of carotenoids. In tomato phytochromes are encoded by a multi-gene family, namely PhyA, PhyB1, PhyB2, PhyE and PhyF, however, their contribution to fruit development and ripening has not been examined. Using single phytochrome mutants- phyA, phyB1 and phyB2 and multiple mutants- phyAB1, phyB1B2 and phyAB1B2, we compared the on-vine transitory phases of ripening till fruit abscission. The phyAB1B2 mutant showed accelerated transitions during ripening with shortest time to fruit abscission. Comparison of transition intervals in mutants indicated a phase-specific influence of different phytochrome species either singly or in combination on the ripening process. Examination of off-vine ripened fruits indicated that ripening specific carotenoid accumulation was not obligatorily dependent on light and even dark incubated fruits accumulated carotenoids. The accumulation of transcripts and carotenoids in off-vine and on-vine ripened mutant fruits indicated a complex and shifting phase-dependent modulation by phytochromes(s). Our results indicate that in addition to regulating carotenoid levels in tomato fruits, phytochrome(s) also regulate the time required for phase transitions during ripening
Beneficial health effects of cumin (Cuminum cyminum) seeds upon incorporation as a potential feed additive in livestock and poultry: A mini-review
Cumin (Cuminum cyminum Linn) is an annual plant of the family Umbelliferae, with its use dating back to ancient times when it was cultivated for its medicinal and culinary potential. Cumin seeds could contain a wide variety of phytochemicals, including alkaloids, coumarins, anthraquinones, flavonoids, glycosides, proteins, resins, saponins, tannins, and steroids. In particular, linoleic acid, one of the unsaturated fatty acids found in abundance in cumin oleoresin, is credited with promoting good health. Many of cumin's purported biological actions in livestock and poultry have been attributed to flavonoids such as apigenin, luteolin, and glycosides. Cumin has several healthful qualities, such as antibacterial, insecticidal, anti-inflammatory, analgesic, antioxidant, anticancer, anti-diabetic, anti-platelet aggregation, hypotensive, bronchodilatory, immunological, anti-amyloidogenic, and anti-osteoporotic properties. Cumin supplementation may improve milk production and reproductive function in dairy cows by altering the feeding pattern of bacteria in the rumen, encouraging the growth of beneficial microbes, or stimulating the secretion of certain digestive enzymes. Because of the low price of cumin seed, it could be concluded that its inclusion in the diet might be beneficial to the commercial poultry industry and reduce the overall cost of egg and meat production. In recent years a rise in cumin's popularity has been seen as a result of the herbal movement spearheaded by naturopaths, yoga gurus, advocates of alternative medicine, and manufacturers of feed additives. Animal nutritionists are exploring the use of cumin for its potential to boost growth, improve nutrient usage efficiency, and reduce greenhouse gas emissions. This mini-review discusses how cumin could be used as a feed ingredient to boost productivity and ensure healthy animal reproduction
Integrating transcriptomic and proteomic data for accurate assembly and annotation of genomes
© 2017 Wong et al.; Published by Cold Spring Harbor Laboratory Press. Complementing genome sequence with deep transcriptome and proteome data could enable more accurate assembly and annotation of newly sequenced genomes. Here, we provide a proof-of-concept of an integrated approach for analysis of the genome and proteome of Anopheles stephensi, which is one of the most important vectors of the malaria parasite. To achieve broad coverage of genes, we carried out transcriptome sequencing and deep proteome profiling of multiple anatomically distinct sites. Based on transcriptomic data alone, we identified and corrected 535 events of incomplete genome assembly involving 1196 scaffolds and 868 protein-coding gene models. This proteogenomic approach enabled us to add 365 genes that were missed during genome annotation and identify 917 gene correction events through discovery of 151 novel exons, 297 protein extensions, 231 exon extensions, 192 novel protein start sites, 19 novel translational frames, 28 events of joining of exons, and 76 events of joining of adjacent genes as a single gene. Incorporation of proteomic evidence allowed us to change the designation of more than 87 predicted noncoding RNAs to conventional mRNAs coded by protein-coding genes. Importantly, extension of the newly corrected genome assemblies and gene models to 15 other newly assembled Anopheline genomes led to the discovery of a large number of apparent discrepancies in assembly and annotation of these genomes. Our data provide a framework for how future genome sequencing efforts should incorporate transcriptomic and proteomic analysis in combination with simultaneous manual curation to achieve near complete assembly and accurate annotation of genomes
Hydroimidazolone Modification of the Conserved Arg12 in Small Heat Shock Proteins: Studies on the Structure and Chaperone Function Using Mutant Mimics
Methylglyoxal (MGO) is an α-dicarbonyl compound present ubiquitously in the human body. MGO reacts with arginine residues in proteins and forms adducts such as hydroimidazolone and argpyrimidine in vivo. Previously, we showed that MGO-mediated modification of αA-crystallin increased its chaperone function. We identified MGO-modified arginine residues in αA-crystallin and found that replacing such arginine residues with alanine residues mimicked the effects of MGO on the chaperone function. Arginine 12 (R12) is a conserved amino acid residue in Hsp27 as well as αA- and αB-crystallin. When treated with MGO at or near physiological concentrations (2–10 µM), R12 was modified to hydroimidazolone in all three small heat shock proteins. In this study, we determined the effect of arginine substitution with alanine at position 12 (R12A to mimic MGO modification) on the structure and chaperone function of these proteins. Among the three proteins, the R12A mutation improved the chaperone function of only αA-crystallin. This enhancement in the chaperone function was accompanied by subtle changes in the tertiary structure, which increased the thermodynamic stability of αA-crystallin. This mutation induced the exposure of additional client protein binding sites on αA-crystallin. Altogether, our data suggest that MGO-modification of the conserved R12 in αA-crystallin to hydroimidazolone may play an important role in reducing protein aggregation in the lens during aging and cataract formation
Dynamics of Hot QCD Matter -- Current Status and Developments
The discovery and characterization of hot and dense QCD matter, known as
Quark Gluon Plasma (QGP), remains the most international collaborative effort
and synergy between theorists and experimentalists in modern nuclear physics to
date. The experimentalists around the world not only collect an unprecedented
amount of data in heavy-ion collisions, at Relativistic Heavy Ion Collider
(RHIC), at Brookhaven National Laboratory (BNL) in New York, USA, and the Large
Hadron Collider (LHC), at CERN in Geneva, Switzerland but also analyze these
data to unravel the mystery of this new phase of matter that filled a few
microseconds old universe, just after the Big Bang. In the meantime,
advancements in theoretical works and computing capability extend our wisdom
about the hot-dense QCD matter and its dynamics through mathematical equations.
The exchange of ideas between experimentalists and theoreticians is crucial for
the progress of our knowledge. The motivation of this first conference named
"HOT QCD Matter 2022" is to bring the community together to have a discourse on
this topic. In this article, there are 36 sections discussing various topics in
the field of relativistic heavy-ion collisions and related phenomena that cover
a snapshot of the current experimental observations and theoretical progress.
This article begins with the theoretical overview of relativistic
spin-hydrodynamics in the presence of the external magnetic field, followed by
the Lattice QCD results on heavy quarks in QGP, and finally, it ends with an
overview of experiment results.Comment: Compilation of the contributions (148 pages) as presented in the `Hot
QCD Matter 2022 conference', held from May 12 to 14, 2022, jointly organized
by IIT Goa & Goa University, Goa, Indi
Rapid identification of causal mutations in tomato EMS populations via mapping-by-sequencing
The tomato is the model species of choice for fleshy fruit development and for the Solanaceae family. Ethyl methanesulfonate (EMS) mutants of tomato have already proven their utility for analysis of gene function in plants, leading to improved breeding stocks and superior tomato varieties. However, until recently, the identification of causal mutations that underlie particular phenotypes has been a very lengthy task that many laboratories could not afford because of spatial and technical limitations. Here, we describe a simple protocol for identifying causal mutations in tomato using a mapping-by-sequencing strategy. Plants displaying phenotypes of interest are first isolated by screening an EMS mutant collection generated in the miniature cultivar Micro-Tom. A recombinant F2 population is then produced by crossing the mutant with a wild-type (WT; non-mutagenized) genotype, and F2 segregants displaying the same phenotype are subsequently pooled. Finally, whole-genome sequencing and analysis of allele distributions in the pools allow for the identification of the causal mutation. The whole process, from the isolation of the tomato mutant to the identification of the causal mutation, takes 6-12 months. This strategy overcomes many previous limitations, is simple to use and can be applied in most laboratories with limited facilities for plant culture and genotyping
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
Not Available
Not AvailableOxygen (O2) is the life line of animals and many other organisms including human beings which is essential for their living. But for perishable food commodities, O2 becomes a limiting factor to enhance its shelf life and quality. Removing this O2 inside the food pack is essential to increase the eating quality of perishable food commodities. Fish is regarded as one of the healthy food commodities but at the same time it is also highly perishable. Proper preservation of this nutrient-rich food is essential to ensure nutritional as well as food security. Smart packaging technology, particularly O2 scavenger, is one of the emerging technologies that assumes great importance in enhancing the shelf life of perishable food commodities including fish. This chapter describes different reduced oxygen packaging technologies giving more emphasis on the O2 scavenging technology for fish preservation.Not Availabl
Estimation of Phagocytic activity by normal human peripheral blood mononuclear cells on various oral isolates of Candida species – An in-vitro study
Polymorphonuclear neutrophils (PMN) and mononuclear phagocytes represent an important first line and effector function in control of Candida infections. The aim of the study is to determine the in-vitro phagocytic activity of human peripheral blood mononuclear cells against oral isolates of Candida species and its antifungal susceptibility. The study also evaluates the degree of respiratory burst activity of PBMCs. Phagocytic and lytic indices by PBMCs were determined for Candida spp. The respiratory burst activity was evaluated by nitroblue tetrazolium test. Antifungal disc diffusion susceptibility testing was performed.
A total of 100 Candida were isolated belonging to the species C.albicans, C. tropicalis, C.krusei and C.auris. Phagocytic and lytic indices of C.albicans was significant when compared to standard strain of C.albicans. For C.tropicalis and C.krusei phagocytic index was significant while lytic index was not significant when compared to standard strain. The inter species comparison of both the indices was not significant for the clinical isolates of Candida. A significant reduction in phagocytic activity was observed for clinical isolates of Candida spp. but lytic activity was variable when compared to the standard strain of C.albicans