89 research outputs found

    Pokemon Silencing Leads to Bim-Mediated Anoikis of Human Hepatoma Cell QGY7703

    Get PDF
    Pokemon is an important proto-oncogene that plays a critical role in cellular oncogenic transformation and tumorigenesis. Anoikis, which is regulated by Bim-mediated apoptosis, is critical to cancer cell invasion and metastasis. We investigated the role of Pokemon in anoikis, and our results show that Pokemon renders liver cells resistant to anoikis via suppression of Bim transcription. We knocked-down Pokemon in human hepatoma cells QGY7703 with small interfering RNAs (siRNA). Knockdown of Pokemon alone did not significantly affect the growth and survival of QGY7703 cells but notably enhanced their sensitivity to apoptotic stress due to the presence of chemical agents or cell detachment, thereby inducing anoikis, as evidenced by flow cytometry and caspase-3 activity assays. In contrast, ectopic expression of Pokemon in HL7702 cells led to resistance to anoikis. Dual-luciferase reporter and ChIP assays illustrated that Pokemon suppressed Bim transcription via direct binding to its promoter. Our results suggest that Pokemon prevents anoikis through the suppression of Bim expression, which facilitates tumor cell invasion and metastasis. This Pokemon-Bim pathway may be an effective target for therapeutic intervention for cancer

    Real-time flow simulation of indoor environments using lattice Boltzmann method

    Get PDF
    A novel lattice Boltzmann method (LBM) based 3D computational fluid dynamics (CFD) technique has been implemented on the graphics processing unit (GPU) for the purpose of simulating the indoor environment in real-time. We study the time evolution of the turbulent airflow and temperature inside a test chamber and in a simple model of a four-bed hospital room. The predicted results from LBM are compared with traditional CFD based large eddy simulations (LES). Reasonable agreement between LBM results and LES method is observed with significantly faster computational times

    The Central Limit Theorem for Random Dynamical Systems

    Get PDF
    We consider random dynamical systems with randomly chosen jumps. The choice of deterministic dynamical system and jumps depends on a position. The Central Limit Theorem for random dynamical systems is established

    Negative Regulation of Endogenous Stem Cells in Sensory Neuroepithelia: Implications for Neurotherapeutics

    Full text link
    Stem cell therapies to treat central nervous system (CNS) injuries and diseases face many obstacles, one of which is the fact that the adult CNS often presents an environment hostile to the development and differentiation of neural stem and progenitor cells. Close examination of two regions of the nervous system – the olfactory epithelium (OE), which regenerates, and the neural retina, which does not – have helped identify endogenous signals, made by differentiated neurons, which act to inhibit neurogenesis by stem/progenitor cells within these tissues. In this chapter, we provide background information on these systems and their neurogenic signaling systems, with the goal of providing insight into how manipulation of endogenous signaling molecules may enhance the efficacy of stem cell neurotherapeutics

    The Rotterdam Study: 2016 objectives and design update

    Full text link

    Absence of keratin 8 confers a paradoxical microflora-dependent resistance to apoptosis in the colon

    No full text
    Keratin 8 (K8) is a major intermediate filament protein present in enterocytes and serves an antiapoptotic function in hepatocytes. K8-null mice develop colonic hyperplasia and colitis that are reversed after antibiotic treatment. To investigate the pathways that underlie the mechanism of colonocyte hyperplasia and the normalization of the colonic phenotype in response to antibiotics, we performed genome-wide microarray analysis. Functional annotation of genes that are differentially regulated in K8−/− and K8+/+ isolated colon crypts (colonocytes) identified apoptosis as a major altered pathway. Exposure of K8−/− colonocytes or colon organ (“organoid”) cultures, but not K8−/− small intestine organoid cultures, to apoptotic stimuli showed, surprisingly, that they are resistant to apoptosis compared with their wild-type counterparts. This resistance is not related to inflammation per se because T-cell receptor α-null (TCR-α−/−) and wild-type colon cultures respond similarly upon induction of apoptosis. Following antibiotic treatment, K8−/− colonocytes and organ cultures become less resistant to apoptosis and respond similarly to the wild-type colonocytes. Antibiotics also normalize most differentially up-regulated genes, including survivin and β4-integrin. Treatment of K8−/− mice with anti–β4-integrin antibody up-regulated survivin, and induced phosphorylation of focal adhesion kinase with decreased activation of caspases. Therefore, unlike the proapoptotic effect of K8 mutation or absence in hepatocytes, lack of K8 confers resistance to colonocyte apoptosis in a microflora-dependent manner
    corecore