43 research outputs found

    Positional Signaling and Expression of ENHANCER OF TRY AND CPC1 Are Tuned to Increase Root Hair Density in Response Phosphate Deficiency in Arabidopsis thaliana

    Get PDF
    Phosphate (Pi) deficiency induces a multitude of responses aimed at improving the acquisition of Pi, including an increased density of root hairs. To understand the mechanisms involved in Pi deficiency-induced alterations of the root hair phenotype in Arabidopsis (Arabidopsis thaliana), we analyzed the patterning and length of root epidermal cells under control and Pi-deficient conditions in wild-type plants and in four mutants defective in the expression of master regulators of cell fate, CAPRICE (CPC), ENHANCER OF TRY AND CPC 1 (ETC1), WEREWOLF (WER) and SCRAMBLED (SCM). From this analysis we deduced that the longitudinal cell length of root epidermal cells is dependent on the correct perception of a positional signal (‘cortical bias’) in both control and Pi-deficient plants; mutants defective in the receptor of the signal, SCM, produced short cells characteristic of root hair-forming cells (trichoblasts). Simulating the effect of cortical bias on the time-evolving probability of cell fate supports a scenario in which a compromised positional signal delays the time point at which non-hair cells opt out the default trichoblast pathway, resulting in short, trichoblast-like non-hair cells. Collectively, our data show that Pi-deficient plants increase root hair density by the formation of shorter cells, resulting in a higher frequency of hairs per unit root length, and additional trichoblast cell fate assignment via increased expression of ETC1

    Genetic Analyses of Interactions among Gibberellin, Abscisic Acid, and Brassinosteroids in the Control of Flowering Time in Arabidopsis thaliana

    Get PDF
    Genetic interactions between phytohormones in the control of flowering time in Arabidopsis thaliana have not been extensively studied. Three phytohormones have been individually connected to the floral-timing program. The inductive function of gibberellins (GAs) is the most documented. Abscisic acid (ABA) has been demonstrated to delay flowering. Finally, the promotive role of brassinosteroids (BRs) has been established. It has been reported that for many physiological processes, hormone pathways interact to ensure an appropriate biological response.We tested possible genetic interactions between GA-, ABA-, and BR-dependent pathways in the control of the transition to flowering. For this, single and double mutants deficient in the biosynthesis of GAs, ABA, and BRs were used to assess the effect of hormone deficiency on the timing of floral transition. Also, plants that over-express genes encoding rate-limiting enzymes in each biosynthetic pathway were generated and the flowering time of these lines was investigated.Loss-of-function studies revealed a complex relationship between GAs and ABA, and between ABA and BRs, and suggested a cross-regulatory relation between GAs to BRs. Gain-of-function studies revealed that GAs were clearly limiting in their sufficiency of action, whereas increases in BRs and ABA led to a more modest phenotypic effect on floral timing. We conclude from our genetic tests that the effects of GA, ABA, and BR on timing of floral induction are only in partially coordinated action

    DELLA-Induced Early Transcriptional Changes during Etiolated Development in Arabidopsis thaliana

    Get PDF
    The hormones gibberellins (GAs) control a wide variety of processes in plants, including stress and developmental responses. This task largely relies on the activity of the DELLA proteins, nuclear-localized transcriptional regulators that do not seem to have DNA binding capacity. The identification of early target genes of DELLA action is key not only to understand how GAs regulate physiological responses, but also to get clues about the molecular mechanisms by which DELLAs regulate gene expression. Here, we have investigated the global, early transcriptional response triggered by the Arabidopsis DELLA protein GAI during skotomorphogenesis, a developmental program tightly regulated by GAs. Our results show that the induction of GAI activity has an almost immediate effect on gene expression. Although this transcriptional regulation is largely mediated by the PIFs and HY5 transcription factors based on target meta-analysis, additional evidence points to other transcription factors that would be directly involved in DELLA regulation of gene expression. First, we have identified cis elements recognized by Dofs and type-B ARRs among the sequences enriched in the promoters of GAI targets; and second, an enrichment in additional cis elements appeared when this analysis was extended to a dataset of early targets of the DELLA protein RGA: CArG boxes, bound by MADS-box proteins, and the E-box CACATG that links the activity of DELLAs to circadian transcriptional regulation. Finally, Gene Ontology analysis highlights the impact of DELLA regulation upon the homeostasis of the GA, auxin, and ethylene pathways, as well as upon pre-existing transcriptional networks
    corecore