24 research outputs found

    (Sub)stellar companions shape the winds of evolved stars

    Get PDF
    Binary interactions dominate the evolution of massive stars, but their role is less clear for low- and intermediate-mass stars. The evolution of a spherical wind from an asymptotic giant branch (AGB) star into a nonspherical planetary nebula (PN) could be due to binary interactions. We observed a sample of AGB stars with the Atacama Large Millimeter/submillimeter Array (ALMA) and found that their winds exhibit distinct nonspherical geometries with morphological similarities to planetary nebulae (PNe). We infer that the same physics shapes both AGB winds and PNe; additionally, the morphology and AGB mass-loss rate are correlated. These characteristics can be explained by binary interaction. We propose an evolutionary scenario for AGB morphologies that is consistent with observed phenomena in AGB stars and PNe

    ATOMIUM: ALMA tracing the origins of molecules in dust forming oxygen rich M-type stars: Motivation, sample, calibration, and initial results

    Get PDF
    This overview paper presents atomium, a Large Programme in Cycle 6 with the Atacama Large Millimeter/submillimeter Array (ALMA). The goal of atomium is to understand the dynamics and the gas phase and dust formation chemistry in the winds of evolved asymptotic giant branch (AGB) and red supergiant (RSG) stars. A more general aim is to identify chemical processes applicable to other astrophysical environments. Seventeen oxygen-rich AGB and RSG stars spanning a range in (circum)stellar parameters and evolutionary phases were observed in a homogeneous observing strategy allowing for an unambiguous comparison. Data were obtained between 213.83 and 269.71 GHz at high (0.025-0.050), medium (0.13-0.24), and low (~1) angular resolution. The sensitivity per ~1.3 km s-1 channel was 1.5-5 mJy beam-1, and the line-free channels were used to image the millimetre wave continuum. Our primary molecules for studying the gas dynamics and dust formation are CO, SiO, AlO, AlOH, TiO, TiO2, and HCN; secondary molecules include SO, SO2, SiS, CS, H2O, and NaCl. The scientific motivation, survey design, sample properties, data reduction, and an overview of the data products are described. In addition, we highlight one scientific result - the wind kinematics of the atomium sources. Our analysis suggests that the atomium sources often have a slow wind acceleration, and a fraction of the gas reaches a velocity which can be up to a factor of two times larger than previously reported terminal velocities assuming isotropic expansion. Moreover, the wind kinematic profiles establish that the radial velocity described by the momentum equation for a spherical wind structure cannot capture the complexity of the velocity field. In fifteen sources, some molecular transitions other than 12CO v = 0 J = 2 - 1 reach a higher outflow velocity, with a spatial emission zone that is often greater than 30 stellar radii, but much less than the extent of CO. We propose that a binary interaction with a (sub)stellar companion may (partly) explain the non-monotonic behaviour of the projected velocity field. The atomium data hence provide a crucial benchmark for the wind dynamics of evolved stars in single and binary star models

    ATOMIUM: halide molecules around the S-type AGB star W Aquilae

    Get PDF
    Context. S-type asymptotic giant branch (AGB) stars are thought to be intermediates in the evolution of oxygen- to carbon-rich AGB stars. The chemical compositions of their circumstellar envelopes are also intermediate but have not been studied in as much detail as their carbon- and oxygen-rich counterparts. W Aql is a nearby S-type star, with well-known circumstellar parameters, making it an ideal object for in-depth study of less common molecules. Aims. We aim to determine the abundances of AlCl and AlF from rotational lines, which have been observed for the first time towards an S-type AGB star. In combination with models based on PACS observations, we aim to update our chemical kinetics network based on these results. Methods. We analyse ALMA observations towards W Aql of AlCl in the ground and first two vibrationally excited states and AlF in the ground vibrational state. Using radiative transfer models, we determine the abundances and spatial abundance distributions of Al35Cl, Al37Cl, and AlF. We also model HCl and HF emission and compare these models to PACS spectra to constrain the abundances of these species. Results. AlCl is found in clumps very close to the star, with emission confined within 0′′.1 of the star. AlF emission is more extended, with faint emission extending 0′′.2 to 0′′.6 from the continuum peak. We find peak abundances, relative to H2, of 1.7 × 10−7 for Al35Cl, 7 × 10−8 for Al37Cl, and 1 × 10−7 for AlF. From the PACS spectra, we find abundances of 9.7 × 10−8 and ≤10−8, relative to H2, for HCl and HF, respectively. Conclusions. The AlF abundance exceeds the solar F abundance, indicating that fluorine synthesised in the AGB star has already been dredged up to the surface of the star and ejected into the circumstellar envelope. From our analysis of chemical reactions in the wind, we conclude that AlF may participate in the dust formation process, but we cannot fully explain the rapid depletion of AlCl seen inthe wind

    The VLT/SPHERE view of the ATOMIUM cool evolved star sample

    Get PDF
    Context. Low- and intermediate-mass asymptotic giant stars and massive red supergiant stars are important contributors to the chemical enrichment of the Universe. They are among the most efficient dust factories of the Galaxy, harboring chemically rich circumstellar environments. Yet, the processes that lead to dust formation or the large-scale shaping of the mass loss still escape attempts at modeling. Aims. Through the ATOMIUM project, we aim to present a consistent view of a sample of 17 nearby cool evolved stars. Our goals are to unveil the dust-nucleation sites and morphologies of the circumstellar envelope of such stars and to probe ambient environments with various conditions. This will further enhance our understanding of the roles of stellar convection and pulsations, and that of companions in shaping the dusty circumstellar medium. Methods. Here we present and analyze VLT/SPHERE-ZIMPOL polarimetric maps obtained in the visible (645–820 nm) of 14 out of the 17 ATOMIUM sources. They were obtained contemporaneously with the ALMA high spatial resolution data. To help interpret the polarized signal, we produced synthetic maps of light scattering by dust, through 3D radiative transfer simulations with the RADMC3D code. Results. The degree of linear polarization (DoLP) observed by ZIMPOL spreads across several optical filters. We infer that it primarily probes dust located just outside of the point spread function of the central source, and in or near the plane of the sky. The polarized signal is mainly produced by structures with a total optical depth close to unity in the line of sight, and it represents only a fraction of the total circumstellar dust. The maximum DoLP ranges from 0.03–0.38 depending on the source, fractions that can be reproduced by our 3D pilot models for grains composed of olivine, melilite, corundum, enstatite, or forsterite. The spatial structure of the DoLP shows a diverse set of shapes, including clumps, arcs, and full envelopes. Only for three sources do we note a correlation between the ALMA CO υ = 0, J = 2−1 and SiO υ = 0, J = 5−4 lines, which trace the gas density, and the DoLP, which traces the dust. Conclusions. The clumpiness of the DoLP and the lack of a consistent correlation between the gas and the dust location show that, in the inner environment, dust formation occurs at very specific sites. This has potential consequences for the derived mass-loss rates and dust-to-gas ratio in the inner region of the circumstellar environment. Except for π1 Gru and perhaps GY Aql, we do not detect interactions between the circumstellar wind and the hypothesized companions that shape the wind at larger scales. This suggests that the orbits of any other companions are tilted out of the plane of the sky

    Atomium: A high-resolution view on the highly asymmetric wind of the AGB star π1Gruis I. First detection of a new companion and its effect on the inner wind

    Get PDF
    The nebular circumstellar environments of cool evolved stars are known to harbour a rich morphological complexity of gaseous structures on different length scales. A large part of these density structures are thought to be brought about by the interaction of the stellar wind with a close companion. The S-type asymptotic giant branch (AGB) star π1Gruis, which has a known companion at ∼440 au and is thought to harbour a second, closer-by (< 10 au) companion, was observed with the Atacama Large Millimeter/submillimeter Array as part of the ATOMIUM Large programme. In this work, the brightest CO, SiO, and HCN molecular line transitions are analysed. The continuum map shows two maxima, separated by 0.04″ (6 au). The CO data unambiguously reveal that π1Gru’s circumstellar environment harbours an inclined, radially outflowing, equatorial density enhancement. It contains a spiral structure at an angle of ∼38 ± 3° with the line-of-sight. The HCN emission in the inner wind reveals a clockwise spiral, with a dynamical crossing time of the spiral arms consistent with a companion at a distance of 0.04″ from the AGB star, which is in agreement with the position of the secondary continuum peak. The inner wind dynamics imply a large acceleration region, consistent with a beta-law power of ∼6. The CO emission suggests that the spiral is approximately Archimedean within 5″, beyond which this trend breaks down as the succession of the spiral arms becomes less periodic. The SiO emission at scales smaller than 0.5″ exhibits signatures of gas in rotation, which is found to fit the expected behaviour of gas in the wind-companion interaction zone. An investigation of SiO maser emission reveals what could be a stream of gas accelerating from the surface of the AGB star to the companion. Using these dynamics, we have tentatively derived an upper limit on the companion mass to be ∼1.1 M

    The everyday world of bouncers: a rehabilitated role for covert ethnography

    Get PDF
    © 2018, The Author(s) 2018. The focus of this article is on the everyday world of bouncers in the night-time economy of Manchester, England. The structure of the article is to contextualise my covert passing in this demonized subculture followed by explorations of the everyday world of bouncers through the related concepts of door order and the bouncer self. A part of the article is an examination of the management of situated ‘ethical moments’ during the fieldwork and, more generally, critical reflections on emotionality, embodiment and risk-taking in ethnography. I also reflect on the retrospective and longitudinal nature of my fieldwork immersion, and both the data management challenges and possibilities this brings. Covert ethnography can be a creative part of the ethnographer’s tool kit and can provide an alternative perspective on subcultures, settings and organisations. By overly frowning upon the apparent ethical transgressions of covert research, we can stifle and censor the sociological imagination rather than enhance it. My call is for a rehabilitation of covert research

    ATOMIUM: Probing the inner wind of evolved O-rich stars with new, highly excited H2O and OH lines

    Get PDF
    Context. Water (H2O) and the hydroxyl radical (OH) are major constituents of the envelope of O-rich late-type stars. Transitions involving energy levels that are rotationally or vibrationally highly excited (energies ≳4000 K) have been observed in both H2O and OH. These and more recently discovered transitions can now be observed at a high sensitivity and angular resolution in the inner wind close to the stellar photosphere with the Atacama Large Millimeter/submillimeter Array (ALMA). Aims. Our goals are: (1) to identify and map the emission and absorption of H2O in several vibrational states, and of OH in Λ-doubling transitions with similar excitation energies; and (2) to determine the physical conditions and kinematics in gas layers close to the extended atmosphere in a sample of asymptotic giant branch stars (AGBs) and red supergiants (RSGs). Methods. Spectra and maps of H2O and OH lines observed in a 27 GHz aggregated bandwidth and with an angular resolution of ~0."02−1."0 were obtained at two epochs with the main ALMA array. Additional observations with the Atacama Compact Array (ACA) were used to check for time variability of water transitions. Radiative transfer models of H2O were revisited to characterize masing conditions. Up-to-date chemical models were used for comparison with the observed OH/H2O abundance ratio. Results. Ten rotational transitions of H2O with excitation energies ~4000–9000 K were observed in vibrational states up to (υ1,υ2,υ3) = (0,1,1). All but one are new detections in space, and from these we have derived accurate rest frequencies. Hyperfine split Λ-doubling transitions in υ = 0, J = 27/2 and 29/2 levels of the 2Π3/2 state, as well as J = 33/2 and 35/2 of the 2Π1/2 state of OH with excitation energies of ~4780–8900 K were also observed. Four of these transitions are new detections in space. Combining our measurements with earlier observations of OH, the υ = 0 and υ = 1 Λ-doubling frequencies have been improved. Our H2O maps show compact emission toward the central star and extensions up to twelve stellar radii or more. The 268.149 GHz emission line of water in the υ2 = 2 state is time variable, tends to be masing with dominant radiative pumping, and is widely excited in AGBs and RSGs. The widespread but weaker 262.898 GHz water line in the υ2 = 1 state also shows signs of maser emission. The OH emission is weak and quasithermally excited. Emission and absorption features of H2O and OH reveal an infall of matter and complex kinematics influenced by binarity. From the OH and H2O column densities derived with nonmasing transitions in a few sources, we obtain OH/H2O abundance ratios of ~(0.7–2.8) × 10−2

    The Ethics of Covert Ethnographic Research

    No full text
    Covert ethnographic research is a method in which the researchers do not reveal the true purpose of their presence among the individuals they are observing. In settings where covert research is not restricted by ethics regulations, the choice between masking and revealing one’s identity does not depend solely on the will of the researcher. I illustrate this using three studies in which I conducted covert research within a hospital and two religious organisations. The chapter concludes by describing the factors which urge a resumption of covert research. This may happen only if a strictly deontological perspective is rejected in favour of one that centres on social critique and the difficult search for truth about the most invisible and sensitive aspects of our social lives
    corecore