62 research outputs found

    Phylogenetic representativeness: a new method for evaluating taxon sampling in evolutionary studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Taxon sampling is a major concern in phylogenetic studies. Incomplete, biased, or improper taxon sampling can lead to misleading results in reconstructing evolutionary relationships. Several theoretical methods are available to optimize taxon choice in phylogenetic analyses. However, most involve some knowledge about the genetic relationships of the group of interest (i.e., the ingroup), or even a well-established phylogeny itself; these data are not always available in general phylogenetic applications.</p> <p>Results</p> <p>We propose a new method to assess taxon sampling developing Clarke and Warwick statistics. This method aims to measure the "phylogenetic representativeness" of a given sample or set of samples and it is based entirely on the pre-existing available taxonomy of the ingroup, which is commonly known to investigators. Moreover, our method also accounts for instability and discordance in taxonomies. A Python-based script suite, called PhyRe, has been developed to implement all analyses we describe in this paper.</p> <p>Conclusions</p> <p>We show that this method is sensitive and allows direct discrimination between representative and unrepresentative samples. It is also informative about the addition of taxa to improve taxonomic coverage of the ingroup. Provided that the investigators' expertise is mandatory in this field, phylogenetic representativeness makes up an objective touchstone in planning phylogenetic studies.</p

    The response of Plantago major ssp pleiosperma to elevated CO2 is modulated by the formation of secondary shoots

    Get PDF
    The effect of elevated CO2 on the relative growth rate (RGR) of Plantago major ssp. pleiosperma was studied during the vegetative stage, in relation to plant development, by growing plants at 350 mu l l(-1) or at 700 mu l l(-1) CO2 in non-limiting nutrient solution with nitrate. To minimize interference by the accumulation of non-structural carbohydrates in the interpretation of results, RGR was expressed on a f. wt basis (RGR(FW)), as were all plant weight ratios. Stimulation of the RGR(FW) Of the whole plant by elevated CO2 was transient, and did not last longer than 8 d. At the same time a transient increase in root weight ratio (RWR) was observed. In order to investigate whether the transient effect of elevated CO2 on RGR(FW) was size-dependent, the data were plotted versus total f. wt (log(e) transformed). The transient period of stimulation of RGR(FW) and of RWR by elevated CO2 was still found, but in both CO2 treatments RGR(FW) decreased after a certain plant size had been reached. This size coincided with the stage at which secondary shoots started to develop, and was reached earlier in plants grown at elevated CO2. The RGR of these secondary shoots (RGR(see)) was Still increased when the period of whole plant stimulation of RGR(FW) had ended, indicating that the development of these new sinks took priority over a continuation of the stimulation of RWR. It is hypothesized that in this Plantago subspecies the response of the RGR(FW) of the whole plants to elevated CO2 is modulated by the formation of secondary shoots. Apparently, partitioning of the extra soluble carbohydrates at elevated CO2 to this tissue takes precedence over partitioning to the roots. resulting in a cessation of stimulation of plant RGR(FW) by elevated CO2.info:eu-repo/semantics/publishedVersio

    LXR Deficiency Confers Increased Protection against Visceral Leishmania Infection in Mice

    Get PDF
    Leishmania spp. are protozoan single-cell parasites that are transmitted to humans by the bite of an infected sand fly, and can cause a wide spectrum of disease, ranging from self-healing skin lesions to potentially fatal systemic infections. Certain species of Leishmania that cause visceral (systemic) disease are a source of significant mortality worldwide. Here, we use a mouse model of visceral Leishmania infection to investigate the effect of a host gene called LXR. The LXRs have demonstrated important functions in both cholesterol regulation and inflammation. These processes, in turn, are closely related to lipid metabolism and the development of atherosclerosis. LXRs have also previously been shown to be involved in protection against other intracellular pathogens that infect macrophages, including certain bacteria. We demonstrate here that LXR is involved in susceptibility to Leishmania, as animals deficient in the LXR gene are much more resistant to infection with the parasite. We also demonstrate that macrophages lacking LXR kill parasites more readily, and make higher levels of nitric oxide (an antimicrobial mediator) and IL-1β (an inflammatory cytokine) in response to Leishmania infection. These results could have important implications in designing therapeutics against this deadly pathogen, as well as other intracellular microbial pathogens

    The nuclear receptor LXR modulates interleukin-18 levels through multiple mechanisms

    Get PDF
    IL-18 is a member of the IL-1 family involved in innate immunity and inflammation. Deregulated levels of IL-18 are involved in the pathogenesis of multiple disorders including inflammatory and metabolic diseases, yet relatively little is known regarding its regulation. Liver X receptors or LXRs are key modulators of macrophage cholesterol homeostasis and immune responses. Here we show that LXR ligands negatively regulate LPS-induced mRNA and protein expression of IL-18 in bone marrow-derived macrophages. Consistent with this being an LXR-mediated process, inhibition is abolished in the presence of a specific LXR antagonist and in LXR-deficient macrophages. Additionally, IL-18 processing of its precursor inactive form to its bioactive state is inhibited by LXR through negative regulation of both pro-caspase 1 expression and activation. Finally, LXR ligands further modulate IL-18 levels by inducing the expression of IL-18BP, a potent endogenous inhibitor of IL-18. This regulation occurs via the transcription factor IRF8, thus identifying IL-18BP as a novel LXR and IRF8 target gene. In conclusion, LXR activation inhibits IL-18 production through regulation of its transcription and maturation into an active pro-inflammatory cytokine. This novel regulation of IL-18 by LXR could be applied to modulate the severity of IL-18 driven metabolic and inflammatory disorders

    Insights into the Molecular Mechanisms of the Anti-Atherogenic Actions of Flavonoids in Normal and Obese Mice

    Get PDF
    Obesity is a major and independent risk factor for cardiovascular disease and it is strongly associated with the development of dyslipidemia, insulin resistance and type 2 diabetes. Flavonoids, a diverse group of polyphenol compounds of plant origin widely distributed in human diet, have been reported to have numerous health benefits, although the mechanisms underlying these effects have remained obscure. We analyzed the effects of chronic dietary supplementation with flavonoids extracted from cranberry (FLS) in normal and obese C57/BL6 mice compared to mice maintained on the same diets lacking FLS. Obese mice supplemented with flavonoids showed an amelioration of insulin resistance and plasma lipid profile, and a reduction of visceral fat mass. We provide evidence that the adiponectin-AMPK pathway is the main mediator of the improvement of these metabolic disorders. In contrast, the reduced plasma atherogenic cholesterol observed in normal mice under FLS seems to be due to a downregulation of the hepatic cholesterol synthesis pathway. Overall, we demonstrate for the first time that the molecular mechanisms underlying the beneficial effects of flavonoids are determined by the metabolic state

    Stroke and incontinence

    No full text
    • …
    corecore