113 research outputs found
Efficiency of primary saliva secretion: an analysis of parameter dependence in dynamic single-cell and acinus models, with application to aquaporin knockout studies
Secretion from the salivary glands is driven by osmosis following the establishment of osmotic gradients between the lumen, the cell and the interstitium by active ion transport. We consider a dynamic model of osmotically driven primary saliva secretion and use singular perturbation approaches and scaling assumptions to reduce the model. Our analysis shows that isosmotic secretion is the most efficient secretion regime and that this holds for single isolated cells and for multiple cells assembled into an acinus. For typical parameter variations, we rule out any significant synergistic effect on total water secretion of an acinar arrangement of cells about a single shared lumen. Conditions for the attainment of isosmotic secretion are considered, and we derive an expression for how the concentration gradient between the interstitium and the lumen scales with water- and chloride-transport parameters. Aquaporin knockout studies are interpreted in the context of our analysis and further investigated using simulations of transport efficiency with different membrane water permeabilities. We conclude that recent claims that aquaporin knockout studies can be interpreted as evidence against a simple osmotic mechanism are not supported by our work. Many of the results that we obtain are independent of specific transporter details, and our analysis can be easily extended to apply to models that use other proposed ionic mechanisms of saliva secretion
Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics
A detailed study is presented of the expected performance of the ATLAS
detector. The reconstruction of tracks, leptons, photons, missing energy and
jets is investigated, together with the performance of b-tagging and the
trigger. The physics potential for a variety of interesting physics processes,
within the Standard Model and beyond, is examined. The study comprises a series
of notes based on simulations of the detector and physics processes, with
particular emphasis given to the data expected from the first years of
operation of the LHC at CERN
Neutrinos from Stored Muons nuSTORM: Expression of Interest
The nuSTORM facility has been designed to deliver beams of electron and muon neutrinos from the decay of a stored muon beam with a central momentum of 3.8 GeV/c and a momentum spread of 10%. The facility is unique in that it will: serve the future long- and short-baseline neutrino-oscillation programmes by providing definitive measurements of electron-neutrino- and muon-neutrino-nucleus cross sections with percent-level precision; allow searches for sterile neutrinos of exquisite sensitivity to be carried out; and constitute the essential first step in the incremental development of muon accelerators as a powerful new technique for particle physics. Of the world's proton-accelerator laboratories, only CERN and FNAL have the infrastructure required to mount nuSTORM. Since no siting decision has yet been taken, the purpose of this Expression of Interest (EoI) is to request the resources required to: investigate in detail how nuSTORM could be implemented at CERN; and develop options for decisive European contributions to the nuSTORM facility and experimental programme wherever the facility is sited. The EoI defines a two-year programme culminating in the delivery of a Technical Design Report
Modulation of innate immune responses at birth by prenatal malaria exposure and association with malaria risk during the first year of life.
BACKGROUND: Factors driving inter-individual differences in immune responses upon different types of prenatal malaria exposure (PME) and subsequent risk of malaria in infancy remain poorly understood. In this study, we examined the impact of four types of PME (i.e., maternal peripheral infection and placental acute, chronic, and past infections) on both spontaneous and toll-like receptors (TLRs)-mediated cytokine production in cord blood and how these innate immune responses modulate the risk of malaria during the first year of life. METHODS: We conducted a birth cohort study of 313 mother-child pairs nested within the COSMIC clinical trial (NCT01941264), which was assessing malaria preventive interventions during pregnancy in Burkina Faso. Malaria infections during pregnancy and infants' clinical malaria episodes detected during the first year of life were recorded. Supernatant concentrations of 30 cytokines, chemokines, and growth factors induced by stimulation of cord blood with agonists of TLRs 3, 7/8, and 9 were measured by quantitative suspension array technology. Crude concentrations and ratios of TLR-mediated cytokine responses relative to background control were analyzed. RESULTS: Spontaneous production of innate immune biomarkers was significantly reduced in cord blood of infants exposed to malaria, with variation among PME groups, as compared to those from the non-exposed control group. However, following TLR7/8 stimulation, which showed higher induction of cytokines/chemokines/growth factors than TLRs 3 and 9, cord blood cells of infants with evidence of past placental malaria were hyper-responsive in comparison to those of infants not-exposed. In addition, certain biomarkers, which levels were significantly modified depending on the PME category, were independent predictors of either malaria risk (GM-CSF TLR7/8 crude) or protection (IL-12 TLR7/8 ratio and IP-10 TLR3 crude, IL-1RA TLR7/8 ratio) during the first year of life. CONCLUSIONS: These findings indicate that past placental malaria has a profound effect on fetal immune system and that the differential alterations of innate immune responses by PME categories might drive heterogeneity between individuals to clinical malaria susceptibility during the first year of life
Beyond BMI for self-estimates of body size and shape: A new method for developing stimuli correctly calibrated for body composition
Accurate self-assessment of body shape and size plays a key role in the prevention, diagnosis, and treatment of both obesity and eating disorders. These chronic conditions cause significant health problems, reduced quality of life, and represent a major problem for health services. Variation in body shape depends on two aspects of composition: adiposity and muscularity. However, most self-assessment tools are unidimensional. They depict variation in adiposity only, typically quantified by the body mass index. This can lead to substantial, and clinically meaningful, errors in estimates of body shape and size. To solve this problem, we detail a method of creating biometrically valid body stimuli. We obtained high-resolution 3D body shape scans and composition measures from 397 volunteers (aged 18–45 years) and produced a statistical mapping between the two. This allowed us to create 3D computer-generated models of bodies, correctly calibrated for body composition (i.e., muscularity and adiposity). We show how these stimuli, whose shape changes are based on change in composition in two dimensions, can be used to match the body size and shape participants believe themselves to have, to the stimulus they see. We also show how multivariate multiple regression can be used to model shape change predicted by these 2D outcomes, so that participants’ choices can be explained by their measured body composition together with other psychometric variables. Together, this approach should substantially improve the accuracy and precision with which self-assessments of body size and shape can be made in obese individuals and those suffering from eating disorders
Agri-Environmental Policy Measures in Israel: The Potential of Using Market-Oriented Instruments
This paper examines the possibilities of developing agri-environmental policy measures in Israel, focusing on market-oriented instruments. A conceptual framework for developing agri-environmental policy measures is presented, first in very broad lines (mandatory regulations, economic instruments and advisory measures) and subsequently focusing on economic instruments, and specifically, on market-oriented ones. Two criteria of choice between the measures are suggested: their contribution to improving the effectiveness of the policy; and the feasibility of their implementation. This is the framework used for analyzing agri-environmental measures in Israel. Israel currently implements a mix of mandatory regulations, economic instruments and advisory measures to promote the agri-environment. The use of additional economic instruments may improve the effectiveness of the policy. When comparing the effectiveness of various economic measures, we found that the feasibility of implementation of market-oriented instruments is greater, due to the Israeli public’s preference for strengthening market orientation in the agricultural sector. Four market-oriented instruments were practiced in a pilot project conducted in an Israeli rural area. We found that in this case study, the institutional feasibility and acceptance by stakeholders were the major parameters influencing the implementation of the market-oriented instruments, whereas the instruments’ contribution to enhancing the ecological or economic effectiveness were hardly considered by the stakeholders as arguments in favor of their use
Measurement of the mean central optical depth of galaxy clusters via the pairwise kinematic Sunyaev-Zel'dovich effect with SPT-3G and des
We infer the mean optical depth of a sample of optically selected galaxy clusters from the Dark Energy Survey via the pairwise kinematic Sunyaev-Zel'dovich (KSZ) effect. The pairwise KSZ signal between pairs of clusters drawn from the Dark Energy Survey Year-3 cluster catalog is detected at 4.1σ in cosmic microwave background temperature maps from two years of observations with the SPT-3G camera on the South Pole Telescope. After cuts, there are 24,580 clusters in the ∼1,400 deg2 of the southern sky observed by both experiments. We infer the mean optical depth of the cluster sample with two techniques. The optical depth inferred from the pairwise KSZ signal is τ¯e=(2.97±0.73)×10-3, while that inferred from the thermal SZ signal is τ¯e=(2.51±0.55stat±0.15syst)×10-3. The two measures agree at 0.6σ. We perform a suite of systematic checks to test the robustness of the analysis
MASTICATORY FUNCTION OF OBESE CANDIDATES TO BARIATRIC SURGERY FROM DISTINCT SOCIOECONOMIC CLASSES
Molecular mechanisms and cellular functions of cGAS-STING signalling
The cGAS–STING signalling axis, comprising the synthase for the second messenger cyclic GMP–AMP (cGAS) and the cyclic GMP–AMP receptor stimulator of interferon genes (STING), detects pathogenic DNA to trigger an innate immune reaction involving a strong type I interferon response against microbial infections. Notably however, besides sensing microbial DNA, the DNA sensor cGAS can also be activated by endogenous DNA, including extranuclear chromatin resulting from genotoxic stress and DNA released from mitochondria, placing cGAS–STING as an important axis in autoimmunity, sterile inflammatory responses and cellular senescence. Initial models assumed that co-localization of cGAS and DNA in the cytosol defines the specificity of the pathway for non-self, but recent work revealed that cGAS is also present in the nucleus and at the plasma membrane, and such subcellular compartmentalization was linked to signalling specificity of cGAS. Further confounding the simple view of cGAS–STING signalling as a response mechanism to infectious agents, both cGAS and STING were shown to have additional functions, independent of interferon response. These involve non-catalytic roles of cGAS in regulating DNA repair and signalling via STING to NF-κB and MAPK as well as STING-mediated induction of autophagy and lysosome- dependent cell death. We have also learnt that cGAS dimers can multimerize and undergo liquid–liquid phase separation to form biomolecular condensates that could importantly regulate cGAS activation. Here, we review the molecular mechanisms and cellular functions underlying cGAS–STING activation and signalling, particularly highlighting the newly emerging diversity of this signalling pathway and discussing how the specificity towards normal, damage-induced and infection-associated DNA could be achieved
Prenatal exposure to Plasmodium falciparum increases frequency and shortens time from birth to first clinical malaria episodes during the first two years of life: prospective birth cohort study
- …
