20 research outputs found

    Lesion of the Cerebellar Noradrenergic Innervation Enhances the Harmaline-Induced Tremor in Rats

    Get PDF
    Abnormal synchronous activation of the glutamatergic olivo-cerebellar pathway has been suggested to be crucial for the harmaline-induced tremor. The cerebellum receives two catecholaminergic pathways: the dopaminergic pathway arising from the ventral tegmental area/substantia nigra pars compacta, and the noradrenergic one from the locus coeruleus. The aim of the present study was to examine a contribution of the cerebellar catecholaminergic innervations to the harmaline-induced tremor in rats. Rats were injected bilaterally into the cerebellar vermis with 6-hydroxydopamine (6-OHDA; 8 μg/0.5 μl) either alone or this treatment was preceded (30 min earlier) by desipramine (15 mg/kg ip). Harmaline was administered to animals in doses of 7.5 or 15 mg/kg ip. Tremor of forelimbs was measured as a number of episodes during a 90-min observation. Rats were killed by decapitation 30 or 120 min after harmaline treatment. The levels of dopamine, noradrenaline, serotonin, and their metabolites were measured by HPLC in the cerebellum, substantia nigra, caudate–putamen, and frontal cortex. 6-OHDA injected alone enhanced the harmaline-induced tremor. Furthermore, it decreased the noradrenaline level by ca. 40–80% in the cerebellum and increased the levels of serotonin and 5-HIAA in the caudate–putamen and frontal cortex in untreated and/or harmaline-treated animals. When 6-OHDA treatment was preceded by desipramine, it decreased dopaminergic transmission in some regions of the cerebellum while inducing its compensatory activation in others. The latter lesion did not markedly influence the tremor induced by harmaline. The present study indicates that noradrenergic innervation of the cerebellum interacts with cerebral serotonergic systems and plays an inhibitory role in the harmaline-induced tremor

    Differential Contribution of L-, N-, and P/Q-type Calcium Channels to [Ca2+]i Changes Evoked by Kainate in Hippocampal Neurons

    Get PDF
    Abstract We investigated the contribution of L-, N- and P/Q-type Ca2+ channels to the [Ca2+]i changes, evoked by kainate, in the cell bodies of hippocampal neurons, using a pharmacological approach and Ca2+ imaging. Selective Ca2+ channel blockers, namely nitrendipine, ?-Conotoxin GVIA (?-GVIA) and ?-Agatoxin IVA (?-AgaIVA) were used. The [Ca2+]i changes evoked by kainate presented a high variability, and were abolished by NBQX, a AMPA/kainate receptor antagonist, but the N-methyl-d-aspartate (NMDA) receptor antagonist, D-AP5, was without effect. Each Ca2+ channel blocker caused differential inhibitory effects on [Ca2+]i responses evoked by kainate. We grouped the neurons for each blocker in three subpopulations: (1) neurons with responses below 60% of the control; (2) neurons with responses between 60% and 90% of the control, and (3) neurons with responses above 90% of the control. The inhibition caused by nitrendipine was higher than the inhibition caused by ?-GVIA or ?-AgaIVA. Thus, in the presence of nitrendipine, the percentage of cells with responses below 60% of the control was 41%, whereas in the case of ?-GVIA or ?-AgaIVA the values were 9 or 17%, respectively. The results indicate that hippocampal neurons differ in what concerns their L-, N- and P/Q- type Ca2+ channels activated by stimulation of the AMPA/kainate receptors

    Construction of a Public CHO Cell Line Transcript Database Using Versatile Bioinformatics Analysis Pipelines

    No full text
    Rupp O, Becker J, Brinkrolf K, et al. Construction of a Public CHO Cell Line Transcript Database Using Versatile Bioinformatics Analysis Pipelines. PLoS ONE. 2014;9(1): e85568.Chinese hamster ovary (CHO) cell lines represent the most commonly used mammalian expression system for the production of therapeutic proteins. In this context, detailed knowledge of the CHO cell transcriptome might help to improve biotechnological processes conducted by specific cell lines. Nevertheless, very few assembled cDNA sequences of CHO cells were publicly released until recently, which puts a severe limitation on biotechnological research. Two extended annotation systems and web-based tools, one for browsing eukaryotic genomes (GenDBE) and one for viewing eukaryotic transcriptomes (SAMS), were established as the first step towards a publicly usable CHO cell genome/transcriptome analysis platform. This is complemented by the development of a new strategy to assemble the ca. 100 million reads, sequenced from a broad range of diverse transcripts, to a high quality CHO cell transcript set. The cDNA libraries were constructed from different CHO cell lines grown under various culture conditions and sequenced using Roche/454 and Illumina sequencing technologies in addition to sequencing reads from a previous study. Two pipelines to extend and improve the CHO cell line transcripts were established. First, de novo assemblies were carried out with the Trinity and Oases assemblers, using varying k-mer sizes. The resulting contigs were screened for potential CDS using ESTScan. Redundant contigs were filtered out using cd-hit-est. The remaining CDS contigs were re-assembled with CAP3. Second, a reference-based assembly with the TopHat/Cufflinks pipeline was performed, using the recently published draft genome sequence of CHO-K1 as reference. Additionally, the de novo contigs were mapped to the reference genome using GMAP and merged with the Cufflinks assembly using the cuffmerge software. With this approach 28,874 transcripts located on 16,492 gene loci could be assembled. Combining the results of both approaches, 65,561 transcripts were identified for CHO cell lines, which could be clustered by sequence identity into 17,598 gene clusters

    Sea-ice transport driving Southern Ocean salinity and its recent trends

    No full text
    Recent salinity changes in the Southern Ocean are among the most prominent signals of climate change in the global ocean, yet their underlying causes have not been firmly established. Here we propose that trends in the northward transport of Antarctic sea ice are a major contributor to these changes. Using satellite observations supplemented by sea-ice reconstructions, we estimate that wind-driven northward freshwater transport by sea ice increased by 20 ± 10 per cent between 1982 and 2008. The strongest and most robust increase occurred in the Pacific sector, coinciding with the largest observed salinity changes. We estimate that the additional freshwater for the entire northern sea-ice edge entails a freshening rate of −0.02 ± 0.01 grams per kilogram per decade in the surface and intermediate waters of the open ocean, similar to the observed freshening. The enhanced rejection of salt near the coast of Antarctica associated with stronger sea-ice export counteracts the freshening of both continental shelf and newly formed bottom waters due to increases in glacial meltwater. Although the data sources underlying our results have substantial uncertainties, regional analyses13 and independent data from an atmospheric reanalysis support our conclusions. Our finding that northward sea-ice freshwater transport is also a key determinant of the mean salinity distribution in the Southern Ocean further underpins the importance of the sea-ice-induced freshwater flux. Through its influence on the density structure of the ocean, this process has critical consequences for the global climate by affecting the exchange of heat, carbon and nutrients between the deep ocean and surface water
    corecore