1,816 research outputs found
PassGAN: A Deep Learning Approach for Password Guessing
State-of-the-art password guessing tools, such as HashCat and John the
Ripper, enable users to check billions of passwords per second against password
hashes. In addition to performing straightforward dictionary attacks, these
tools can expand password dictionaries using password generation rules, such as
concatenation of words (e.g., "password123456") and leet speak (e.g.,
"password" becomes "p4s5w0rd"). Although these rules work well in practice,
expanding them to model further passwords is a laborious task that requires
specialized expertise. To address this issue, in this paper we introduce
PassGAN, a novel approach that replaces human-generated password rules with
theory-grounded machine learning algorithms. Instead of relying on manual
password analysis, PassGAN uses a Generative Adversarial Network (GAN) to
autonomously learn the distribution of real passwords from actual password
leaks, and to generate high-quality password guesses. Our experiments show that
this approach is very promising. When we evaluated PassGAN on two large
password datasets, we were able to surpass rule-based and state-of-the-art
machine learning password guessing tools. However, in contrast with the other
tools, PassGAN achieved this result without any a-priori knowledge on passwords
or common password structures. Additionally, when we combined the output of
PassGAN with the output of HashCat, we were able to match 51%-73% more
passwords than with HashCat alone. This is remarkable, because it shows that
PassGAN can autonomously extract a considerable number of password properties
that current state-of-the art rules do not encode.Comment: This is an extended version of the paper which appeared in NeurIPS
2018 Workshop on Security in Machine Learning (SecML'18), see
https://github.com/secml2018/secml2018.github.io/raw/master/PASSGAN_SECML2018.pd
A Generative-Discriminative Basis Learning Framework to Predict Clinical Severity from Resting State Functional MRI Data
We propose a matrix factorization technique that decomposes the resting state
fMRI (rs-fMRI) correlation matrices for a patient population into a sparse set
of representative subnetworks, as modeled by rank one outer products. The
subnetworks are combined using patient specific non-negative coefficients;
these coefficients are also used to model, and subsequently predict the
clinical severity of a given patient via a linear regression. Our
generative-discriminative framework is able to exploit the structure of rs-fMRI
correlation matrices to capture group level effects, while simultaneously
accounting for patient variability. We employ ten fold cross validation to
demonstrate the predictive power of our model on a cohort of fifty eight
patients diagnosed with Autism Spectrum Disorder. Our method outperforms
classical semi-supervised frameworks, which perform dimensionality reduction on
the correlation features followed by non-linear regression to predict the
clinical scores
A Novel Method for Epileptic Seizure Detection Using Coupled Hidden Markov Models
We propose a novel Coupled Hidden Markov Model to detect epileptic seizures
in multichannel electroencephalography (EEG) data. Our model defines a network
of seizure propagation paths to capture both the temporal and spatial evolution
of epileptic activity. To address the intractability introduced by the coupled
interactions, we derive a variational inference procedure to efficiently infer
the seizure evolution from spectral patterns in the EEG data. We validate our
model on EEG aquired under clinical conditions in the Epilepsy Monitoring Unit
of the Johns Hopkins Hospital. Using 5-fold cross validation, we demonstrate
that our model outperforms three baseline approaches which rely on a classical
detection framework. Our model also demonstrates the potential to localize
seizure onset zones in focal epilepsy.Comment: To appear in MICCAI 2018 Proceeding
Changes in Dopamine Signalling Do Not Underlie Aberrant Hippocampal Plasticity in a Mouse Model of Huntington's Disease
Altered dopamine receptor labelling has been demonstrated in presymptomatic and symptomatic Huntington's disease (HD) gene carriers, indicating that alterations in dopaminergic signalling are an early event in HD. We have previously described early alterations in synaptic transmission and plasticity in both the cortex and hippocampus of the R6/1 mouse model of Huntington's disease. Deficits in cortical synaptic plasticity were associated with altered dopaminergic signalling and could be reversed by D1- or D2-like dopamine receptor activation. In light of these findings we here investigated whether defects in dopamine signalling could also contribute to the marked alteration in hippocampal synaptic function. To this end we performed dopamine receptor labelling and pharmacology in the R6/1 hippocampus and report a marked, age-dependent elevation of hippocampal D1 and D2 receptor labelling in R6/1 hippocampal subfields. Yet, pharmacological inhibition or activation of D1- or D2-like receptors did not modify the aberrant synaptic plasticity observed in R6/1 mice. These findings demonstrate that global perturbations to dopamine receptor expression do occur in HD transgenic mice, similarly in HD gene carriers and patients. However, the direction of change and the lack of effect of dopaminergic pharmacological agents on synaptic function demonstrate that the perturbations are heterogeneous and region-specific, a finding that may explain the mixed results of dopamine therapy in HD
Hidden Markov Models and their Application for Predicting Failure Events
We show how Markov mixed membership models (MMMM) can be used to predict the
degradation of assets. We model the degradation path of individual assets, to
predict overall failure rates. Instead of a separate distribution for each
hidden state, we use hierarchical mixtures of distributions in the exponential
family. In our approach the observation distribution of the states is a finite
mixture distribution of a small set of (simpler) distributions shared across
all states. Using tied-mixture observation distributions offers several
advantages. The mixtures act as a regularization for typically very sparse
problems, and they reduce the computational effort for the learning algorithm
since there are fewer distributions to be found. Using shared mixtures enables
sharing of statistical strength between the Markov states and thus transfer
learning. We determine for individual assets the trade-off between the risk of
failure and extended operating hours by combining a MMMM with a partially
observable Markov decision process (POMDP) to dynamically optimize the policy
for when and how to maintain the asset.Comment: Will be published in the proceedings of ICCS 2020;
@Booklet{EasyChair:3183, author = {Paul Hofmann and Zaid Tashman}, title =
{Hidden Markov Models and their Application for Predicting Failure Events},
howpublished = {EasyChair Preprint no. 3183}, year = {EasyChair, 2020}
The color of smiling: computational synaesthesia of facial expressions
This note gives a preliminary account of the transcoding or rechanneling
problem between different stimuli as it is of interest for the natural
interaction or affective computing fields. By the consideration of a simple
example, namely the color response of an affective lamp to a sensed facial
expression, we frame the problem within an information- theoretic perspective.
A full justification in terms of the Information Bottleneck principle promotes
a latent affective space, hitherto surmised as an appealing and intuitive
solution, as a suitable mediator between the different stimuli.Comment: Submitted to: 18th International Conference on Image Analysis and
Processing (ICIAP 2015), 7-11 September 2015, Genova, Ital
Quantum machine learning: a classical perspective
Recently, increased computational power and data availability, as well as
algorithmic advances, have led machine learning techniques to impressive
results in regression, classification, data-generation and reinforcement
learning tasks. Despite these successes, the proximity to the physical limits
of chip fabrication alongside the increasing size of datasets are motivating a
growing number of researchers to explore the possibility of harnessing the
power of quantum computation to speed-up classical machine learning algorithms.
Here we review the literature in quantum machine learning and discuss
perspectives for a mixed readership of classical machine learning and quantum
computation experts. Particular emphasis will be placed on clarifying the
limitations of quantum algorithms, how they compare with their best classical
counterparts and why quantum resources are expected to provide advantages for
learning problems. Learning in the presence of noise and certain
computationally hard problems in machine learning are identified as promising
directions for the field. Practical questions, like how to upload classical
data into quantum form, will also be addressed.Comment: v3 33 pages; typos corrected and references adde
Pseudorehearsal in value function approximation
Catastrophic forgetting is of special importance in reinforcement learning,
as the data distribution is generally non-stationary over time. We study and
compare several pseudorehearsal approaches for Q-learning with function
approximation in a pole balancing task. We have found that pseudorehearsal
seems to assist learning even in such very simple problems, given proper
initialization of the rehearsal parameters
Predicting Fluid Intelligence of Children using T1-weighted MR Images and a StackNet
In this work, we utilize T1-weighted MR images and StackNet to predict fluid
intelligence in adolescents. Our framework includes feature extraction, feature
normalization, feature denoising, feature selection, training a StackNet, and
predicting fluid intelligence. The extracted feature is the distribution of
different brain tissues in different brain parcellation regions. The proposed
StackNet consists of three layers and 11 models. Each layer uses the
predictions from all previous layers including the input layer. The proposed
StackNet is tested on a public benchmark Adolescent Brain Cognitive Development
Neurocognitive Prediction Challenge 2019 and achieves a mean squared error of
82.42 on the combined training and validation set with 10-fold
cross-validation. In addition, the proposed StackNet also achieves a mean
squared error of 94.25 on the testing data. The source code is available on
GitHub.Comment: 8 pages, 2 figures, 3 tables, Accepted by MICCAI ABCD-NP Challenge
2019; Added ND
Robots that can adapt like animals
As robots leave the controlled environments of factories to autonomously
function in more complex, natural environments, they will have to respond to
the inevitable fact that they will become damaged. However, while animals can
quickly adapt to a wide variety of injuries, current robots cannot "think
outside the box" to find a compensatory behavior when damaged: they are limited
to their pre-specified self-sensing abilities, can diagnose only anticipated
failure modes, and require a pre-programmed contingency plan for every type of
potential damage, an impracticality for complex robots. Here we introduce an
intelligent trial and error algorithm that allows robots to adapt to damage in
less than two minutes, without requiring self-diagnosis or pre-specified
contingency plans. Before deployment, a robot exploits a novel algorithm to
create a detailed map of the space of high-performing behaviors: This map
represents the robot's intuitions about what behaviors it can perform and their
value. If the robot is damaged, it uses these intuitions to guide a
trial-and-error learning algorithm that conducts intelligent experiments to
rapidly discover a compensatory behavior that works in spite of the damage.
Experiments reveal successful adaptations for a legged robot injured in five
different ways, including damaged, broken, and missing legs, and for a robotic
arm with joints broken in 14 different ways. This new technique will enable
more robust, effective, autonomous robots, and suggests principles that animals
may use to adapt to injury
- …
