45 research outputs found

    Access to Artemisinin-Based Anti-Malarial Treatment and its Related Factors in Rural Tanzania.

    Get PDF
    Artemisinin-based combination treatment (ACT) has been widely adopted as one of the main malaria control strategies. However, its promise to save thousands of lives in sub-Saharan Africa depends on how effective the use of ACT is within the routine health system. The INESS platform evaluated effective coverage of ACT in several African countries. Timely access within 24 hours to an authorized ACT outlet is one of the determinants of effective coverage and was assessed for artemether-lumefantrine (Alu), in two district health systems in rural Tanzania. From October 2009 to June 2011we conducted continuous rolling household surveys in the Kilombero-Ulanga and the Rufiji Health and Demographic Surveillance Sites (HDSS). Surveys were linked to the routine HDSS update rounds. Members of randomly pre-selected households that had experienced a fever episode in the previous two weeks were eligible for a structured interview. Data on individual treatment seeking, access to treatment, timing, source of treatment and household costs per episode were collected. Data are presented on timely access from a total of 2,112 interviews in relation to demographics, seasonality, and socio economic status. In Kilombero-Ulanga, 41.8% (CI: 36.6-45.1) and in Rufiji 36.8% (33.7-40.1) of fever cases had access to an authorized ACT provider within 24 hours of fever onset. In neither of the HDSS site was age, sex, socio-economic status or seasonality of malaria found to be significantly correlated with timely access. Timely access to authorized ACT providers is below 50% despite interventions intended to improve access such as social marketing and accreditation of private dispensing outlets. To improve prompt diagnosis and treatment, access remains a major bottle neck and new more innovative interventions are needed to raise effective coverage of malaria treatment in Tanzania

    The interaction between a sexually transferred steroid hormone and a female protein regulates oogenesis in the malaria mosquito anopheles gambiae

    Get PDF
    Molecular interactions between male and female factors during mating profoundly affect the reproductive behavior and physiology of female insects. In natural populations of the malaria mosquito Anopheles gambiae, blood-fed females direct nutritional resources towards oogenesis only when inseminated. Here we show that the mating-dependent pathway of egg development in these mosquitoes is regulated by the interaction between the steroid hormone 20-hydroxy-ecdysone (20E) transferred by males during copulation and a female Mating-Induced Stimulator of Oogenesis (MISO) protein. RNAi silencing of MISO abolishes the increase in oogenesis caused by mating in blood-fed females, causes a delay in oocyte development, and impairs the function of male-transferred 20E. Co-immunoprecipitation experiments show that MISO and 20E interact in the female reproductive tract. Moreover MISO expression after mating is induced by 20E via the Ecdysone Receptor, demonstrating a close cooperation between the two factors. Male-transferred 20E therefore acts as a mating signal that females translate into an increased investment in egg development via a MISO-dependent pathway. The identification of this male–female reproductive interaction offers novel opportunities for the control of mosquito populations that transmit malaria

    Geographic clustering of testicular cancer incidence in the northern part of The Netherlands

    Get PDF
    Geographic variations in testicular cancer incidence may be caused by differences in environmental factors, genetic factors, or both. In the present study, geographic patterns of age-adjusted testicular cancer incidence rates (IRs) in 12 provinces in The Netherlands in the period 1989–1995 were analysed. In addition, the age-adjusted IR of testicular cancer by degree of urbanization was evaluated. Cancer incidence data were obtained from the Netherlands Cancer Registry. The overall annual age-adjusted IR of testicular cancer in The Netherlands in the period 1989–1995 was 4.4 per 100 000 men. The province Groningen in the north of the country showed the highest annual IR with 5.8 per 100 000 men, which was higher (P < 0.05) than the overall IR in The Netherlands (incidence rate ratio (IRR) 1.3, 95% confidence interval (CI) 1.1–1.6). The highest IR in Groningen was seen for both seminomas and non-seminomas. In addition, Groningen showed the highest age-specific IRs in all relevant younger age groups (15–29, 30–44 and 45–59 years), illustrating the consistency of data. The province Friesland, also situated in the northern part of the country, showed the second highest IR of testicular cancer with 5.3 cases per 100 000 men per year (IRR 1.2, 95% Cl 1.0–1.5, not significant). This mainly resulted from the high IR of seminoma in Friesland. Analysis of age-adjusted IRs of testicular cancer by degree of urbanization in The Netherlands showed no urban–rural differences at analysis of all histological types combined, or at separate analyses of seminomas and non-seminomas. Geographic clustering of testicular cancer seems to be present in the rural north of The Netherlands with some stable founder populations, which are likely to share a relatively high frequency of genes from common ancestors including genes possibly related to testicular cancer. Although this finding does not exclude the involvement of shared environmental factors in the aetiology of testicular cancer, it may also lend support to a genetic susceptibility to testicular cancer development. Testicular cancer cases in stable founder populations seem particularly suitable for searching for testicular cancer susceptibility genes because such genes are likely to be more frequent among affected men in such populations. © 1999 Cancer Research Campaig

    Microbial cycling of isoprene, the most abundantly produced biological volatile organic compound on Earth

    Get PDF
    Isoprene (2-methyl-1,3-butadiene), the most abundantly produced biogenic volatile organic compound (BVOC) on Earth, is highly reactive and can have diverse and often detrimental atmospheric effects, which impact on climate and health. Most isoprene is produced by terrestrial plants, but (micro)algal production is important in aquatic environments, and the relative bacterial contribution remains unknown. Soils are a sink for isoprene, and bacteria that can use isoprene as a carbon and energy source have been cultivated and also identified using cultivation-independent methods from soils, leaves and coastal/marine environments. Bacteria belonging to the Actinobacteria are most frequently isolated and identified, and Proteobacteria have also been shown to degrade isoprene. In the freshwater-sediment isolate, Rhodococcus strain AD45, initial oxidation of isoprene to 1,2-epoxy-isoprene is catalyzed by a multicomponent isoprene monooxygenase encoded by the genes isoABCDEF. The resultant epoxide is converted to a glutathione conjugate by a glutathione S-transferase encoded by isoI, and further degraded by enzymes encoded by isoGHJ. Genome sequence analysis of actinobacterial isolates belonging to the genera Rhodococcus, Mycobacterium and Gordonia has revealed that isoABCDEF and isoGHIJ are linked in an operon, either on a plasmid or the chromosome. In Rhodococcus strain AD45 both isoprene and epoxy-isoprene induce a high level of transcription of 22 contiguous genes, including isoABCDEF and isoGHIJ. Sequence analysis of the isoA gene, encoding the large subunit of the oxygenase component of isoprene monooxygenase, from isolates has facilitated the development of PCR primers that are proving valuable in investigating the ecology of uncultivated isoprene-degrading bacteria

    Health information system linkage and coordination are critical for increasing access to secondary prevention in Aboriginal health: A qualitative study

    Full text link
    Background Aboriginal Australians have low rates of participation in cardiac rehabilitation (CR), despite having high rates of cardiovascular disease. Barriers to CR participation reflect multiple patientrelated issues. However, an examination of the broader context of health service delivery design and implementation is needed. Aims To identify health professionals' perspectives of systems related barriers to implementation of the National Health and Medical Research Council (NHMRC) guidelines Strengthening Cardiac Rehabilitation and Secondary Prevention for Aboriginal and Torres Strait Islander Peoples.1 Method Semi-structured interviews were conducted with health professionals involved in CR within mainstream and Aboriginal Community Controlled Health Services in Western Australia (WA). Thirty-eight health professionals from 17 services (ten rural, seven metropolitan) listed in the WA Directory of CR services and seven Aboriginal Medical Services in WA were interviewed. Results Respondents reported barriers encountered in health information management and the impact of access to CR services for Aboriginal people. Crucial issues identified by participants were: poor communication across the health care sector and between providers, inconsistent and insufficient data collection processes (particularly relating to Aboriginal ethnicity identification), and challenges resulting from multiple clinical information systems and incompatible technologies. Conclusions This study has demonstrated that inadequate information systems and communication strategies, particularly those representing the interface between primary and secondary care, contribute to the low participation rates of Aboriginal Australians in CR. Although these challenges are shared by non-Aboriginal Australians, the needs are greater for Aboriginal Australians and innovative solutions are required. © 2010 Radcliffe Publishing
    corecore