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Abstract The potential of using three different data-dri-

ven techniques namely, multilayer perceptron with back-

propagation artificial neural network (MLP), M5 decision

tree model, and Takagi–Sugeno (TS) inference system for

mimic stage–discharge relationship at Gharraf River sys-

tem, southern Iraq has been investigated and discussed in

this study. The study used the available stage and discharge

data for predicting discharge using different combinations

of stage, antecedent stages, and antecedent discharge val-

ues. The models’ results were compared using root mean

squared error (RMSE) and coefficient of determination (R2)

error statistics. The results of the comparison in testing

stage reveal that M5 and Takagi–Sugeno techniques have

certain advantages for setting up stage–discharge than

multilayer perceptron artificial neural network. Although

the performance of TS inference system was very close to

that for M5 model in terms of R2, the M5 method has the

lowest RMSE (8.10 m3/s). The study implies that both M5

and TS inference systems are promising tool for identifying

stage–discharge relationship in the study area.

Keywords Stage–discharge relationship � M5 model �
Artificial neural network � Gharraf River � Iraq

Introduction

The reliable estimation of river flow rate (discharge) is a

prerequisite and crucial component for hydrological

applications and analyses. Because of the dynamic nature

of hydrological system, direct measurements of discharge

are typically time consuming, costly and even impossible,

especially during flood. Therefore, most discharge records

are derived from converting the measured water levels

(stages) to discharges by a functional relationship that is

expressed as a rating curve. A calibrated stage–discharge

rating offers an easy, cheap, and fast technique to estimate

discharge (World Meteorological Organization 1980;

Kennedy 1984; Herschy 1999). Stage–discharge rating is

generally treated as the following power curve (Herschy

1999):

Q ¼ b aþ Hð Þa ð1Þ

where Q is the discharge; H is the stage; a is an index

exponent; a and b are constants (depending on the study

area).

Unfortunately, the functional relationship between stage

and discharge is complex, time-varying, and cannot always

captured by simple rating curve, even with the help of tra-

ditional modeling techniques such as polynomial regression

or autoregressive integrated moving average ARIMA tech-

nique (Bhattacharya and Solomatine 2000). Many research

attempts to establish this relation via data-driven techniques

such as artificial neural networks ANNs (Tawfik et al. 1997;

Bhattacharya and Solomatine 2000; Sudheer and Jain 2003;

Bisht et al. 2010), decision trees (Bhattacharya and Solom-

atine 2003; Ghimire and Reddy 2010; Ajmera and Goyal

2012), support vector machine (Aggarwal et al. 2012),

wavelet-regression model (Kişi 2011), Takagi–Sugeno

fuzzy inference system (Lohani et al. 2006), and evolu-

tionary-based data-driven models (Ghimire and Reddy 2010;

Azamathulla et al. 2011). The results approve that these

techniques are very efficient and reliable.

The aim of this study is to investigate the potential of the

different data-driven models (artificial neural networks,

A. M. Al-Abadi (&)

Department of Geology, College of Sciences, University of

Basra, Basra, Iraq

e-mail: alaaatiaa@gmail.com

123

Appl Water Sci (2016) 6:407–420

DOI 10.1007/s13201-014-0258-7

CORE Metadata, citation and similar papers at core.ac.uk

Provided by MUCC (Crossref)

https://core.ac.uk/display/191352476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s13201-014-0258-7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13201-014-0258-7&amp;domain=pdf


fuzzy inference system, and M5 decision trees) to emulate

stage–discharge rating curve of the Gharraf River at Hay,

south of Iraq. Daily records of the stage and discharge are

available for this river at Hay station for the period from

April 2005 to May 2006. The performance of these tech-

niques was compared and the best one with smaller esti-

mation error selected for future estimation of discharge

from available data of previous discharge and stage values.

Modeling techniques

Artificial neural networks

Artificial neural networks (ANNs) are massively parallel

systems composed of many processing elements connected

by links of variable weights. Given sufficient data and

complexity, ANNs can be trained to model any relationship

between a series of independent and dependent variables.

For this reason, ANNs are considered to be universal

approximates and have been successfully applied to a wide

variety of problems that are difficult to understand, define

and quantify. There are many different types of ANNs

based on topology. One of the many ANN paradigms, the

Multilayer Perceptron (MLP) network, is by far the most

popular (Lippmann 1987). The MLP is layered feedfor-

ward network which is typically trained with static back-

propagation (BP) algorithm. MLP is capable of

approximating any measurable function from one finite-

dimensional space to another within a desired degree of

accuracy (HornikK and White 1989). The MLP network

consists of layers of parallel processing nodes. Each layer

is fully connected to the preceding layer by interconnection

strength, or weights, w. Figure 1 presents a three-layer

MLP neural network consisting of layers i, j, and k, with

interconnection weights wij and wjk between layers of

neurons. Each neuron in a layer receives and processes

weighted input from a previous layer and transmits its

output to nodes in the following layer through links. The

connection between ith and jth neuron is characterized by

the weight coefficient wij and the ith neuron by the

threshold coefficient #i. The weight coefficient reflects the

degree of importance of the given connection in the net-

work. The output value of the ith neuron xi is computed as

follows: (Haykin 1994)

xi ¼ f nið Þ ð2Þ

with

ni ¼ #i þ
X

j2C�1
i

wij xj ð3Þ

where f(ni) is the activation function. The threshold

coefficient can be understood as a weight coefficient of

the connection. With formally added neuron j, where

xj = 1, sigmoid shape activation functions are normally

defined as:

f nið Þ ¼ 1

1 þ e�n
ð4Þ

The backpropagation algorithm works by computing the

error between the network output and the corresponding

target value and propagating this backward through the

network to update the weights. The weight updates are

calculated based on:

Dwij tð Þ ¼ �g
oE

owij

þ lDWij t � 1ð Þ ð5Þ

Where g and l are the learning and momentum rates,

respectively. E is the error, or objective function, and Dwij

(t) and Dwij (t–1) are– the weight increments between

nodes i and j for iterations t and t–1. A detailed description

of this algorithm can be found in Fausett (1994) and

Haykin (1994).

M5 decision tree

A decision tree is a logical model represented as a binary

(two-way split) tree that shows how the values of a target

(dependent) variable can be predicted using the values of a

set of predictor (independent) variables. There are basically

two types of decision trees: (1) classification trees which

are the msost commonly used to predict a symbolic attri-

bute (class) (2) regression trees which are used to predict

the value of a numeric attribute Witten and Frank (2005). If

each leaf in the tree contains a linear regression model,

which is used to predict the target variable at that leaf, then

it is called a model tree.Fig. 1 Architecture of multilayer perceptron with one hidden layer
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The M5 model tree algorithm was originally developed

by Quinlan (1992). Detailed description of this technique is

beyond the scope of this paper. It can be found in Witten

and Frank (2005). A short description of this technique

follows. The M5 algorithm constructs a regression tress by

recursively splitting the instance space using tests on a

single attributes that maximally reduce variance in the

target variable. Figure 2 illustrates this concept. The for-

mula to compute the standard deviation reduction (SDR) is

(Quinlan 1992):

SDR ¼ sd Tð Þ �
X Tij j

Tj j sd Tið Þ ð6Þ

where T represents a set of example that reaches the node;

Ti represents the subset of examples that have the ith out-

come of the potential set; and sd represents the standard

deviation.

After the tree has been grown, a linear multiple

regression is built for every inner node using the data

associated with that node and all the attributes that par-

ticipate for tests in the subtree to that node. After that,

every subtree is considered for pruning process to over-

come the overfitting problem. Pruning occurs when the

estimated error for the linear model at the root of a subtree

is smaller or equal to the expected error for the subtree.

Model 3

Model 1

Model 2

Model 6Model 4

Model 5

X2

X1

Y (output) X1 & X2 inputs of system

X2>2

X1<4

X2<1

X1>2.5

X2<3.5

No

Yes

No

No
No

Yes

Model 4

Model 5 Model 6
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No
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YesYes

Fig. 2 Examples of M5 model. 1–6 are linear regression models [modified after Solomatine and Xue (2004)]
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Finally, the smoothing process is employed to compensate

for the sharp discontinuities between adjacent linear mod-

els at the leaves of the pruned tree.

Fuzzy logic

The term ‘‘fuzzy logic’’ has in fact two distinct meanings.

In a narrow sense, it is viewed as a generalization of

classical multi-valued logics (Demicco and Klir 2001). In a

broad sense, fuzzy logic is viewed as a system of concepts,

principles, and methods for dealing with modes of rea-

soning that are approximate rather than exact Fig. 1. The

fuzzy logic system is a cognitive artificial intelligence

scientific technique developed in 1965 by Professor Lotfi

Zadeh of the Department of Computer Science, University

of California, Berkeley, USA. It provides a means of rep-

resenting uncertainties and vagueness that characterize

human perception, judgmental reasoning, and decision

(Emami et al. 2000). The generation of a fuzzy model is

based on expert knowledge and historical data Fig. 2.

Fuzzy inference is the process of formulating the mapping

from a given input to an output equation using fuzzy logic,

and then the mapping provides a basis from which deci-

sions can be made or discerned. The fuzzy inference sys-

tem (FIS) consists of four main interconnected components

(Fig. 3): rules, fuzzifier, inference engine, and output pro-

cessor. Once the rules have been established, a fuzzy logic

system can be viewed as a map from inputs to outputs. The

rules are the heart of a FIS and can be expressed as a

collection of IF–THEN statements. The IF part of a rule is

antecedent and the THEN part is consequent. Depending

on the particular structure of the consequent proposition,

three main types of fuzzy models are distinguished as: (1)

Linguistic (Mamdani-Type) fuzzy model (Zadeh 1973;

Mamdani 1977), (2) Fuzzy relational model (Pedrycz 1984;

Yi and Chung 1993), (3) Takagi–Sugeno (TS) fuzzy model

(Takagi and Sugeno 1985). In this paper, the TS fuzzy

model is employed to emulate stage–discharge rating

curve, so a brief description of this method is outlined

below.

In the TS fuzzy inference system, the rule consequents

are usually taken to be either crisp numbers or linear

functions of the inputs (Lohani et al. 2006)

Ri ¼ IF x is Ai THEN

yi ¼ aTi x þ bi i ¼ 1; 2; . . .; M
ð7Þ

where x 2 <n is the antecedent and yi 2 < is the

consequent of the ith rule. In the consequent, ai is the

parameter vector and bi is the scalar offset. The number of

rules is denoted by M and Ai is the (multivariate)

antecedent fuzzy set of the ith rule defined by the

membership function

li xð Þ : <n ! 0; 1½ � ð8Þ

The fuzzy antecedent in the TS model is defined as an

and-conjunction by means of the products operator Wolfs

and Willems (2013)

li xð Þ ¼
Yp

j ¼ 1
lij xj
� �

ð9Þ

where xj is the jth input variable in the p dimensional input

data space, and lij the membership degree of xj to the fuzzy

set describing the jth premise part of the ith rule. li(x) is the
overall truth value of the ith rule.

y ¼
XM

i ¼ 1

ui xð Þ � yi ð10Þ

Where ui is the normalized degree of fulfillment of the

antecedent clause of rule Ri (Setnes 2000)

ui ¼ li xð Þ
PM

f

lf xð Þ
ð11Þ

The yis are called consequent functions of the M rules

and defined by:

yi ¼ Wi0 þ Wi1x1 þ Wi2x2 þ � � � þ Wipxp ð12Þ

where Wij are the linear weights for the ith rule consequent

function.

The study area and data description

The Gharraf River system is located in Mesopotamian

plain, southern Iraq (Fig. 4). The drainage area of this

system is 435,052 9 106 m2. The river begins in the Kut

Barrage and runs south between the great Euphrates and

Tigris Rivers, and ends in Al-Hammer marsh land in

Nassyria city. The main length of the river isFig. 3 Flow chart of fuzzy inference system model
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approximately 230 km. The Gharraf area is characterized

by hot and dry summer and cold and wet winter. The cli-

mate of the area is classified as semi-arid one. The course

of the Shatt Al Gharraf can be subdivided according to the

conditions that governed its development as follows (Iraqi

Ministries of Environment, Water resources, Municipalities

Fig. 4 Location of the Gharraf

River system, southern Iraq
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and Public works 2006): (1) The Hay Delta, which ends at

Kalaat Sukkar in which expansion can take place, (2) The

Rafai gully extends to about 10 km upstream of Bada’a in

which flow is restricted, no lateral expansion being possi-

ble, (3) The Bada’a Delta is the most recent region of

expansion on the left bank towards the Hor Abu Ijul, Hor

H’weynah and Hor Ghamukah depressions, and (4) The

Shattrah and Kasser–Ibrahim Deltas are the regions of

expansion at the end of the Rafai gully.

The daily averages of stage and discharge data for the

Hay station on the Gharraf River were used in this study.

The observed data covers the period from April 2005 to

May 2006. In Iraq, it is difficult to obtain enough time

series to build data-driven models; hence, approximately

1 year was used. The available data was arbitrary divided

into two parts sets: 66 % for training and 34 % for testing

for all models developed in this study. The statistical

parameters of the used data are given in Table 1. In this

table, N, Min., Max., �x, Me, s, Cv, and Ks refer to total

number of data, minimum, maximum, arithmetic average,

standard deviation, coefficient of variation, and coefficient

of skewness, respectively. From Table 1, one could con-

clude that variation of discharge values is higher than that

for stage. The maximum values of stage in testing set are

higher than that for training set, this may cause difficulty to

estimate discharge at extreme values. One the other hand,

the maximum and minimum values of discharge in testing

set fall within the range in training test. This may overcome

the problem of estimation extreme discharge values which

previously mention.

Performance criteria for the developed models

The performance of the various data-driven models was

evaluated by means of errors statistics criteria such as root

mean squared error (RMSE) and coefficient of determina-

tion (R2). The mathematical formulation of these criteria is

outlined below:

(a) Root mean square error (RMSE)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

Qi � Q̂i

� �2

n

vuuut
ð13Þ

where Qi is the measured discharge and Q̂ is the simu-

lated discharge, n is the number of observations

(instants). As the value of this criterion approaches zero,

the better fit between observed and modeled data is

obtained.

(b) Coefficient of determination

R2 ¼ 1� SSE

SSy
ð14Þ

where SSE ¼
Pn

i¼1

Qi � Q̂i

� �2
SSy ¼

Pn

i¼1

Qi � �Qið Þ2 where
�Q is the arithmetic mean of the observed Q. The better the

fit, the closer R2 is to ± 1.

Applications of the techniques

Artificial neural networks

In this study, feedforward neural network (MLP) with

backpropagation algorithm was employed for developing

ANN models. The popularity of MLP in hydrological

application (Zhang and Govindaragju 2003; Leahy et al.

2008) is the main reason for selecting this network.

Although, the architecture of MLP can have many hidden

layers, works by Cybenco (1989) and Coulibaly et al.

(1999) have shown that a single hidden layer is sufficient

for the MLP to approximate any complex non-linear

function. For all the developed models, the Levenberg–

Marquardt algorithm was applied to train the networks. The

logistic sigmoid transfer function is used in the hidden

layer and a linear one in the output layer for the all the

developed networks. The early stopping method was

selected to overcome overfitting problem. Demo version of

Alyuda NeuroIntelligent commercial software was used in

this study to build different neural networks. NeuroIntel-

ligence is a neural network software for experts. It is used

to apply neural networks to solve real-world forecasting,

classification and function approximation problems. It is

Table 1 Summary of statistical parameters of the used data

Data set N Min. Max. �x Me s Cv Ks

Overall

H 331 8.75 10.95 9.71 9.7 0.232 2.39 2.31

Q 331 75 175 145.48 150 20.54 14.12 -1.42

Training

H 218 8.75 10.95 9.71 9.7 0.27 2.76 2.27

Q 218 75 175 146.21 150 19.19 13.12 -1.34

Testing

H 113 9.2 10.2 9.71 9.7 0.138 1.43 0.01

Q 113 75 144.7 150 22.07 15.25 -1.46

Table 2 Input combinations for the developed models

Model Input combinations Output variable

1 Ht Qt

2 Ht, Qt-1 Qt

3 Ht-1, Ht, Qt-1 Qt

4 Ht-1, Ht, Qt-2, Qt-1 Qt

5 Ht-2, Ht-1, Ht, Qt-2, Qt-1 Qt

412 Appl Water Sci (2016) 6:407–420
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full-packed with proven techniques for neural network

design and optimization. To ensure that each variable is

treated equally in the models, all the input and output data

were automatically normalized into the range [-1, 1]. The

default values of learning rate (0.1) and momentum rate

(0.1) were used for building network models. The number

of nodes in the hidden layer for each developed models

were determined by trial and error procedure considering

the need to derive reasonable results.

The study examined various combinations of river stage

Ht with specified lag times Ht-1 and Ht-2 and the ante-

cedent discharges Qt-1 and Qt-2 as inputs to the ANN

models to evaluate the degree of effect of each of these

variables on output variable Qt. The input combinations

evaluated in the present study are shown in Table 2. The

same variable input combinations were also used for M5

and TS fuzzy inference system techniques. Also, to reduce

network error, different numbers of iterations for the best

network were examined. These tests were conducted to

verify whether an increase iteration numbers could reduce

error rate or not.

M5 decision trees

For building M5 models, Weka 3.6 software was used.

Weka is open-source machine learning/data mining software

written in Java Witten and Frank (2005). The software

contains a comprehensive set of pre-processing tools,

learning algorithms and evaluation methods. For this study,

the parameters of M5 algorithm were set to their default

values; pruning factor 4.0 and smoothing option. The soft-

ware was available on http://www.cs.waikato.ac.nz/*ml.

TS fuzzy inference system

A fuzzy toolbox in MATLAB 2012a software was used for

building fuzzy models. Membership functions were

extracted via subtractive clustering method. Subtractive

clustering method (Chiu 1994) is an extension of the

mountain clustering method, where data points (not grid

points) are considered as the potential candidates for

cluster centers. It uses the positions of the data points to

calculate the density function, thus reducing the number of

calculations significantly. Since each data point is a can-

didate for cluster centers, a density measure at data point xi
is defined as (Chiu 1994)

Di ¼
Xn

j¼1

exp �
xi � xj
�� ��2

ra=2ð Þ2

 !
ð15Þ

where ra is a positive constant representing a neighborhood

radius. Therefore, a data point will have a high density

value if it has many neighboring data points. A trial and

error procedure was used to assign a suitable value of

calculus radius. After many trials the best result was 0.2.

Three Gaussian membership functions were extracted for

each model, which were labeled as low, medium, and high.

The same labels were used for Qt. Default values of the TS

inference system were used in this study.

Results and discussions

The RMSE and R2 statistics of each ANN model in testing

period are given in Table 3. The ANN model whose inputs

were Ht-1, Ht, Qt-2, and Qt-1 (input combination 4) with

[4 15 1] architecture has the smallest RMSE (9.91 m3/s)

and the highest R2 (0.82). As shown in Table 3, using only

the stage Ht (input combination 1) gives poor estimate with

the RMSE (21.99) and R2 (0.05). Among the ANN models,

whose inputs were the antecedent discharges (input com-

binations 2, 3, 4, and 5), the ANN model with Qt-1 has the

biggest RMSE (12.06 m3/s) and the lowest R2 (0.67). This

emphasizes that the Qt is mostly dependent on the ante-

cedent discharge values. Among the ANN models, whose

inputs were the antecedent stages (input combinations 3, 4,

and 5), the ANN model with inputs Ht-2, Ht-1, and Ht has

the biggest RMSE (12.03 m3/s) and the lowest R2 (0.72). In

general, all the developed ANN models except ANN-1 and

ANN-2 with [2 3 1] have good capabilities to emulate

stage–discharge relationship because they have reasonable

Table 3 Statistical performance criteria for one hidden layer ANN’s

models

Model Input combinations ANN architecture Testing set

RMSE R2

ANN-1 Ht [1 3 1] 21.99 0.05

ANN-2 Ht, Qt-1 [2 3 1] 12.06 0.67

[2 5 1] 10.67 0.75

[2 10 1] 10.97 0.73

ANN-3 Ht-1, Ht, Qt-1 [3 3 1] 10.58 0.79

[3 8 1] 10.47 0.76

[3 15 1] 10.58 0.82

ANN-4 Ht-1, Ht, Qt-2, Qt-1 [4 5 1] 10.16 0.79

[4 15 1] 9.91 0.82

ANN-5 Ht-2, Ht-1, Ht, Qt-2, Qt-1 [5 5 1] 12.3 0.72

Italic values indicate the best model for mimicstage-discharge rela-

tionship for each used model

H: stage at present time (day)

Ht-1: stage at previous day

Ht-2: stage at previous two days

Q: discharge at present time (m3/s)

Qt-1: discharge at previous day (m3/s)

Qt-2: discharge at precious two days (m3/s)
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RMSE and R2. Table 3 also shows that the increasing of

hidden nodes brought slightly better performance for the

developed models. The Qt estimates of the best perfor-

mance models are also represented graphically in Fig. (5).

It is obviously seen from these figures that measured and

estimated discharge was reasonably good. All the figures

show that the estimated discharge Qt for all the developed

models was underestimated especially with the lowest

values of discharge.

Table 4 presents the statistical performances of M5

decision tree models in which the model whose inputs were

Ht and Qt-2 (input combination 2) was the best model

among all other developed models with lowest RMSE and

R2, 8.10 and 0.88, respectively. The other models also

perform best except the MT1 with single input H value.

Fig. 5 Comparison between measured and estimated discharge and

best fit lines for best Performance ANN’s models a ANN-3 [3 3 1]

b ANN-3 [3 15 1] c ANN-4 [4 5 1] d ANN-4 [4 15 1] and e ANN-6 [3

8 8 1]

Table 4 Statistical performance criteria for M5P decision tree

technique

Model Input combinations Testing set

RMSE R2

DT1 Ht 16.44 0.26

DT2 Ht, Qt-1 8.10 0.88

DT3 Ht-1, Ht, Qt-1 8.32 0.87

DT4 Ht-1, Ht, Qt-2, Qt-1 8.32 0.87

DT5 Ht-2, Ht-1, Ht, Qt-2, Qt-1 8.32 0.87

Italic values indicate the best model for mimicstage-discharge rela-

tionship for each used model

H: stage at present time (day)

Ht-1: stage at previous day

Ht-2: stage at previous two days

Q: discharge at present time (m3/s)

Qt-1: discharge at previous day (m3/s)

Qt-2: discharge at precious two days (m3/s)
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Fig. 6 Comparison between measured and estimated discharges and best fit lines for the best Performance of M5 models

Table 5 Statistical performance criteria for TS fuzzy engine

Model Input combinations Testing set

RMSE R2

TS1 Ht 22.22 0.04

TS2 Ht, Qt-1 8.17 0.88

TS3 Ht-1, Ht, Qt-1 8.31 0.87

TS4 Ht-1, Ht, Qt-2, Qt-1 8.46 0.87

TS5 Ht-2, Ht-1, Ht, Qt-2, Qt-1 8.44 0.87

Italic values indicate the best model for mimicstage-discharge rela-

tionship for each used model

H: stage at present time (day)

Ht-1: stage at previous day

Ht-2: stage at previous two days

Q: discharge at present time (m3/s)

Qt-1: discharge at previous day (m3/s)

Qt-2: discharge at precious two days (m3/s)

b
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Figure 6 shows a graphical comparison between measured

and estimated discharges. It is obvious from Fig. 5 that the

MT2-5 four models have very good agreement between

measured and estimated discharges for both low and high

values. For the MT5 model, the following rule was

extracted from M5 algorithm:

Qt�1 ( 136:5 : LM1 61=39:078 %ð Þ
Qt�1 [ 136:5 :

jQt�1 ( 151:5 : LM2 102=31:145 %ð Þ
jQt�1 [ 151:5 : LM3 54=64:323 %ð Þ

LM num: 1

R² = 0.8812

40

80

120

160

200

40 80 120 160 200

Es
�m

at
ed

 d
is

ch
ar

ge
 

Mesured discharge 

(TS2)
20

60

100

140

180

220

0 20 40 60 80 100 120

Di
sc

ha
rg

e 
(m

3 /
s)

Time (day)

Measured discharge

Es�mated discharge

20

60

100

140

180

220

0 20 40 60 80 100 120

Di
sc

ha
rg

e 
(m

3 /
s)

Time (day)

Measured discharge

Es�mated discharge

R² = 0.8763

40

80

120

160

200

40 80 120 160 200

Es
�m

at
ed

 d
is

ch
ar

ge
 

Mesured discharge 

(TS3)

20

60

100

140

180

220

0 20 40 60 80 100 120

Di
sc

ha
rg

e 
(m

3 /
s)

Time (day)

Measured discharge

Es�mated discharge

R² = 0.8718

40

80

120

160

200

40 80 120 160 200

Es
�m

at
ed

 d
is

ch
ar

ge
 

Mesured discharge 

(TS4)

20

60

100

140

180

220

0 20 40 60 80 100 120

Di
sc

ha
rg

e 
(m

3 /
s)

Time (day)

Measured discharge

Es�mated discharge

R² = 0.8703

40

80

120

160

200

40 80 120 160 200

Es
�m

at
ed

 d
is

ch
ar

ge
 

Mesured discharge 

(TS5)

Fig. 7 Comparison between measured and estimated discharge and best fit lines for the best Performance of TS inference engines
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Qt ¼ �17:2053 � Ht�2 � 2:2944 � Ht�1 þ 0:2323
� Qt�2 þ 0:1694 � Qt�1 þ 2:992 � H

þ 237:7584

LM num: 2

Qt ¼ �0:4746 � Ht�2 � 2:5982 � Ht�1 � 0:0163
� Qt�2 þ 0:6489 � Qt�1 þ 3:1867 � H

þ 53:6424

LM num: 3

Fig. 8 Membership editor for TS2 inference engine

Fig. 9 Fuzzy rules for TS2 inference system
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Qt ¼ �0:4746 � Ht�2 � 14:9457 � Ht�1 � 0:0276
� Qt�2 þ 0:2338 � Qt�1 þ 19:5879 � H

þ 85:3705

For the MT2 with minimal input data (input

combinations 2), the following tree was extracted:

LM num: 1

Qt ¼ 0:8555 � Qt�1 þ 21:2475

The statistical performance of TS inference system is

shown in Table 5. Results of this data-driven model

were similar to that of M5 model. The TS2 with two

inputs parameter, i.e., H and Qt-1 was the best among

the other models with lowest RMSE (8.17) and R2

(0.88). The worst model was the model whose input was

stage only Fig. 6. The other three models (TS3-5) also

perform very well where both high and low values were

reasonably predicted (Fig. 7). The TS2 was selected in

this study a candidate for comparison with other data-

driven models because it has minimal input data and

perform the best for all other developed models as

mentioned previously. The membership editor and

fuzzy rules for this model are shown in Figs. 8, 9,

respectively. Three simple fuzzy rules were generated

for this model. These are:

IFQt�1 is low and H is low THEN Q is low

IFQt�1 is medium and H is medium THEN Q is medium

IFQt�1 is high and H is high THEN Q is high

The TS inference system for this model is illustrated in

Fig. 10.

The comparison between the three data-driven best

models is presented in Table 6. The best data-driven model

for estimating Qt was M5 model tree. Although, the per-

formance of TS inference system was very close to that for

M5 model in terms of R2, the M5 method has the lowest

RMSE (8.10 m3/s). Results also reveal that the M5 model

performed better than the ANN model for both low and

high discharge predictions. The complex structure of ANN

and the many parameters which must be assigned for

successful training make the ANN a second priority when

compared with the simple structure and very fast training

M5 algorithm. The generated tree structure with linear

models on the leaves bears another benefit for this tech-

nique; it was very easy to understand even from those

people who are unfamiliar with hydrology. The same

results were obtained by Ajmera and Goyal (2012) when

they compared between ANN and M5 techniques for

mimic flow rating curve. The results of this study agree

Fig. 10 TS2 fuzzy inference system

Table 6 Comparison between the three best data-driven models

Model Testing set

RMSE R2

ANN 9.91 0.82

DT2 8.10 0.88

TS2 8.17 0.88
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with Ajmer and Goyal (2012) and added another compar-

ison, i.e., between TS inference system and M5 which

enhance the capability of M5 model for emulating stage–

discharge relationship. The results also indicated that TS

and MT models that used only two variables (Qt-1 and

H) were very good for predicting Qt for the study area.

Conclusions

The abilities of the artificial neural networks, M5 decision

trees, and Takagi and Sugeno fuzzy inference techniques

for emulating stage–discharge relationship for Gharraf

River system, southern Iraq have been investigated and

discussed in this study. The study demonstrated that

modeling of this relationship is possible through using

these techniques. The M5 decision tree technique models

with minimal data, i.e., current stage and one antecedent

discharge, perform better than that ANN models and TS

inference engine. The root mean squared error and corre-

lation of determination for best M5 model were (8.17 m3/s)

and (0.88), respectively. The best M5 and TS models were

able to predict discharge on both high and low values. Most

of the developed ANN models were slightly capable to

predict the discharge but most predictions were underesti-

mating. All the developed models with stage as a single

input failed to mimic stage–discharge relationship. This

implies that antecedent discharges were needed for better

relationship at this area. The study used data from one

station and further studies using more data may enhance

the results obtained by this study.
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tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

References

Aggarwal SK, Goel A, Singh VP (2012) Stage and discharge

forecasting by SVM and ANN techniques. Water Resour Manag.

doi:10.1007/s11269-012-0098-x

Ajmera TK, Goyal MK (2012) Development of stage-discharge rating

curve using model tree and neural networks: an application of

Peachtree Creek in Atlanta. Expert Syst Appl 39:5702–5710

Azamathulla HM, Ghani AA, Leow CS, Chang CK, Zakaria NA

(2011) Gene-expression programming for the development of a

stage-discharge curve of the Pahang River. Water Resour Manag

25:2901–2916

Bhattacharya B, Solomatine DP (2000) Application of neural network

in stage discharge relationship. In: Proceedings of the interna-

tional conference of hydroinformatics, Iowa, USA

Bhattacharya B, Solomatine DP (2003) Neural networks and M5

model trees in modeling water level-discharge relationship for an

Indian river. ESAN’2003 In: Proceedings-European Symposium

on Artificial Neural Network Belgium

Bisht DC, Raju MM, Joshi MC (2010) ANN based river stage-

discharge modeling for Godavari River, India. Comput Model

New Technol 14:48–62

Chiu SL (1994) Fuzzy model identification based on cluster

estimation. J Intell Fuzzy Sys 2:267–278

Coulibaly P, Anctil F, Bobée B (1999) Prévision hydrologique par
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Kişi O (2011) Wavelet regression model as an alternative to neural

networks for river stage forecasting. Water Resour Manag

25:579–600

Leahy P, Kiely G, Corcoran G (2008) Structural optimization and

input selection of an artificial neural network for river level

prediction. J Hydrol 355:192–201

Lippmann RP (1987) An introduction to computing with neural nets.

IEEE ASSP Magazine 4–22

Lohani AK, Goel NK, Bhatia KK (2006) Takagi-Sugeno fuzzy

inference system form modeling stage-discharge relasionship.

J Hydrol 331:146–160

Mamdani EH (1977) Application of fuzzy logic to approximate

reasoning using linguistic systems. Fuzzy Sets Syst

26:1182–1191

Pedrycz W (1984) An identification algorithm in fuzzy relational

systems. Fuzzy Sets Syst 13:153–167

Quinlan JR (1992) Learning with continuous classes. In: Proceedings

A192, 5th Australian Join Conference on Artificial Intelligence,

Singapore. pp 343–348

Setnes M (2000) Supervised fuzzy clustering for rule extraction. IEEE

Transactions Fuzzy Syst 8(4):416–424

Solomatine DP, Xue Y (2004) M5 model trees and neural networks:

application to flood forecasting in the upper reach of the Huai

River in China. J Hydrol Eng 9:491–501

Sudheer KP, Jain SK (2003) Radial basis function neural network for

modeling rating curves. J Hydrol Eng 8:161–162

Takagi T, Sugeno M (1985) Identification of systems and its

application to modeling and control. Insti. Elect Electron Eng

Trans Syst Man Cybern 15:116–132

Tawfik M, Ibrahim A, Fahmy H (1997) Hysteresis sensitive neural

network for modeling rating curves. J Comput Civ Eng

11:201–211

Appl Water Sci (2016) 6:407–420 419

123

http://dx.doi.org/10.1007/s11269-012-0098-x


Witten IH, Frank E (2005) Data mining. Morgan Kaufmann, USA

Wolfs V, Willems P (2013) A data driven approach using Takagi—

Sugeno models for computationally efficient lumped floodplain

modeling. J Hydrol 503:222–232

World Meteorological Organization (1980) Manual on stream gaug-

ing, vol. II: computation of discharge. Operational hydrology

report No. 13, WMO

Yi SY, Chung MJ (1993) Identification of fuzzy relational model and

its application to control. Fuzzy Sets Syst 59:25–33

Zadeh LA (1973) Outline of a new approach to the analysis of

complex systems and decision processes. IEEE Trans Syst Man

Cyber 1:28–44

Zhang B, Govindaragju R (2003) Geomorphology-based artificial

neural networks (GANNs) for estimation of direct runoff over

watersheds. J Hydrol 273:18–34

420 Appl Water Sci (2016) 6:407–420

123


	Modeling of stage--discharge relationship for Gharraf River, southern Iraq using backpropagation artificial neural networks, M5 decision trees, and Takagi--Sugeno inference system technique: a comparative study
	Abstract
	Introduction
	Modeling techniques
	Artificial neural networks
	M5 decision tree
	Fuzzy logic
	The study area and data description
	Performance criteria for the developed models

	Applications of the techniques
	Artificial neural networks
	M5 decision trees
	TS fuzzy inference system

	Results and discussions
	Conclusions
	Open Access
	References




