192 research outputs found

    Rab-GTPase binding effector protein 2 (RABEP2) is a primed substrate for Glycogen Synthase kinase-3 (GSK3)

    Get PDF
    Glycogen synthase kinase-3 (GSK3) regulates many physiological processes through phosphorylation of a diverse array of substrates. Inhibitors of GSK3 have been generated as potential therapies in several diseases, however the vital role GSK3 plays in cell biology makes the clinical use of GSK3 inhibitors potentially problematic. A clearer understanding of true physiological and pathophysiological substrates of GSK3 should provide opportunities for more selective, disease specific, manipulation of GSK3. To identify kinetically favourable substrates we performed a GSK3 substrate screen in heart tissue. Rab-GTPase binding effector protein 2 (RABEP2) was identified as a novel GSK3 substrate and GSK3 phosphorylation of RABEP2 at Ser200 was enhanced by prior phosphorylation at Ser204, fitting the known consensus sequence for GSK3 substrates. Both residues are phosphorylated in cells while only Ser200 phosphorylation is reduced following inhibition of GSK3. RABEP2 function was originally identified as a Rab5 binding protein. We did not observe co-localisation of RABEP2 and Rab5 in cells, while ectopic expression of RABEP2 had no effect on endosomal recycling. The work presented identifies RABEP2 as a novel primed substrate of GSK3, and thus a potential biomarker for GSK3 activity, but understanding how phosphorylation regulates RABEP2 function requires more information on physiological roles of RABEP2

    GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy

    Full text link
    We propose to perform a continuously scanning all-sky survey from 200 keV to 80 MeV achieving a sensitivity which is better by a factor of 40 or more compared to the previous missions in this energy range. The Gamma-Ray Imaging, Polarimetry and Spectroscopy (GRIPS) mission addresses fundamental questions in ESA's Cosmic Vision plan. Among the major themes of the strategic plan, GRIPS has its focus on the evolving, violent Universe, exploring a unique energy window. We propose to investigate γ\gamma-ray bursts and blazars, the mechanisms behind supernova explosions, nucleosynthesis and spallation, the enigmatic origin of positrons in our Galaxy, and the nature of radiation processes and particle acceleration in extreme cosmic sources including pulsars and magnetars. The natural energy scale for these non-thermal processes is of the order of MeV. Although they can be partially and indirectly studied using other methods, only the proposed GRIPS measurements will provide direct access to their primary photons. GRIPS will be a driver for the study of transient sources in the era of neutrino and gravitational wave observatories such as IceCUBE and LISA, establishing a new type of diagnostics in relativistic and nuclear astrophysics. This will support extrapolations to investigate star formation, galaxy evolution, and black hole formation at high redshifts.Comment: to appear in Exp. Astron., special vol. on M3-Call of ESA's Cosmic Vision 2010; 25 p., 25 figs; see also www.grips-mission.e

    Functional Structure of Biological Communities Predicts Ecosystem Multifunctionality

    Get PDF
    The accelerating rate of change in biodiversity patterns, mediated by ever increasing human pressures and global warming, demands a better understanding of the relationship between the structure of biological communities and ecosystem functioning (BEF). Recent investigations suggest that the functional structure of communities, i.e. the composition and diversity of functional traits, is the main driver of ecological processes. However, the predictive power of BEF research is still low, the integration of all components of functional community structure as predictors is still lacking, and the multifunctionality of ecosystems (i.e. rates of multiple processes) must be considered. Here, using a multiple-processes framework from grassland biodiversity experiments, we show that functional identity of species and functional divergence among species, rather than species diversity per se, together promote the level of ecosystem multifunctionality with a predictive power of 80%. Our results suggest that primary productivity and decomposition rates, two key ecosystem processes upon which the global carbon cycle depends, are primarily sustained by specialist species, i.e. those that hold specialized combinations of traits and perform particular functions. Contrary to studies focusing on single ecosystem functions and considering species richness as the sole measure of biodiversity, we found a linear and non-saturating effect of the functional structure of communities on ecosystem multifunctionality. Thus, sustaining multiple ecological processes would require focusing on trait dominance and on the degree of community specialization, even in species-rich assemblages

    Selective depletion of mouse kidney proximal straight tubule cells causes acute kidney injury

    Get PDF
    The proximal straight tubule (S3 segment) of the kidney is highly susceptible to ischemia and toxic insults but has a remarkable capacity to repair its structure and function. In response to such injuries, complex processes take place to regenerate the epithelial cells of the S3 segment; however, the precise molecular mechanisms of this regeneration are still being investigated. By applying the “toxin receptor mediated cell knockout” method under the control of the S3 segment-specific promoter/enhancer, Gsl5, which drives core 2 β-1,6-N-acetylglucosaminyltransferase gene expression, we established a transgenic mouse line expressing the human diphtheria toxin (DT) receptor only in the S3 segment. The administration of DT to these transgenic mice caused the selective ablation of S3 segment cells in a dose-dependent manner, and transgenic mice exhibited polyuria containing serum albumin and subsequently developed oliguria. An increase in the concentration of blood urea nitrogen was also observed, and the peak BUN levels occurred 3–7 days after DT administration. Histological analysis revealed that the most severe injury occurred in the S3 segments of the proximal tubule, in which tubular cells were exfoliated into the tubular lumen. In addition, aquaporin 7, which is localized exclusively to the S3 segment, was diminished. These results indicate that this transgenic mouse can suffer acute kidney injury (AKI) caused by S3 segment-specific damage after DT administration. This transgenic line offers an excellent model to uncover the mechanisms of AKI and its rapid recovery

    Plant Community Diversity Influences Allocation to Direct Chemical Defence in Plantago lanceolata

    Get PDF
    Background: Forecasting the consequences of accelerating rates of changes in biodiversity for ecosystem functioning requires a mechanistic understanding of the relationships between the structure of biological communities and variation in plant functional characteristics. So far, experimental data of how plant species diversity influences the investment of individual plants in direct chemical defences against herbivores and pathogens is lacking. Methodology/Principal Findings: We used Plantago lanceolata as a model species in experimental grasslands differing in species richness and composition (Jena Experiment) to investigate foliar concentrations of the iridoid glycosides (IG), catalpol and its biosynthetic precursor aucubin. Total IG and aucubin concentrations decreased, while catalpol concentrations increased with increasing plant diversity in terms of species or functional group richness. Negative plant diversity effects on total IG and aucubin concentrations correlated with increasing specific leaf area of P. lanceolata, suggesting that greater allocation to light acquisition reduced the investment into these carbon-based defence components. In contrast, increasing leaf nitrogen concentrations best explained increasing concentrations of the biosynthetically more advanced IG, catalpol. Observed levels of leaf damage explained a significant proportion of variation in total IG and aucubin concentrations, but did not account for variance in catalpol concentrations. Conclusions/Significance: Our results clearly show that plants growing in communities of varying species richness an

    GSK-3β Is Required for Memory Reconsolidation in Adult Brain

    Get PDF
    Activation of GSK-3β is presumed to be involved in various neurodegenerative diseases, including Alzheimer's disease (AD), which is characterized by memory disturbances during early stages of the disease. The normal function of GSK-3β in adult brain is not well understood. Here, we analyzed the ability of heterozygote GSK-3β knockout (GSK+/−) mice to form memories. In the Morris water maze (MWM), learning and memory performance of GSK+/− mice was no different from that of wild-type (WT) mice for the first 3 days of training. With continued learning on subsequent days, however, retrograde amnesia was induced in GSK+/− mice, suggesting that GSK+/− mice might be impaired in their ability to form long-term memories. In contextual fear conditioning (CFC), context memory was normally consolidated in GSK+/− mice, but once the original memory was reactivated, they showed reduced freezing, suggesting that GSK+/− mice had impaired memory reconsolidation. Biochemical analysis showed that GSK-3β was activated after memory reactivation in WT mice. Intraperitoneal injection of a GSK-3 inhibitor before memory reactivation impaired memory reconsolidation in WT mice. These results suggest that memory reconsolidation requires activation of GSK-3β in the adult brain

    Why do you drink caffeine? The development of the Motives for Caffeine Consumption Questionnaire (MCCQ) and its relationship with gender, age and the types of caffeinated beverages

    Get PDF
    Caffeine is the most popular psychoactive substance that is consumed worldwide. As motives influence behavior, investigation of the motivational background of caffeine consumption should help provide a better understanding of the popularity of caffeinated products. The present study aimed (i) to explore and operationalize the motives of caffeine consumption and (ii) to reveal possible differences in the motives regarding gender, age and the type of caffeinated products consumed. Motives for caffeine consumption were collected from regular caffeine consumers (N = 26) and were informed by a review of the relevant literature. Following this, a cross-sectional study was conducted on a convenience sample of Hungarian university students and working adults (N = 598). The participants completed the Motives for Caffeine Consumption Questionnaire and the Caffeine Consumption Questionnaire. Six motivational factors were identified: Alertness, Habit, Mood, Social, Taste and Symptom Management. Women had higher scores on Habit, Social, Taste and Symptom Management. Younger participants had higher scores on Alertness than the older group, and the older group had higher scores on Habit and Symptom Management. Five types of caffeine users were identified. Those who consumed (i) coffee, (ii) tea, (iii) energy drinks, (iv) coffee and tea and (v) mixed drinks. Several differences between the five groups were revealed across all motives except for Taste. The present study developed a robust psychometric instrument for assessing caffeine consumption motives. The factors varied in importance in relation to gender, age and caffeine consumption habits

    How individuals change language

    Get PDF
    Languages emerge and change over time at the population level though interactions between individual speakers. It is, however, hard to directly observe how a single speaker's linguistic innovation precipitates a population-wide change in the language, and many theoretical proposals exist. We introduce a very general mathematical model that encompasses a wide variety of individual-level linguistic behaviours and provides statistical predictions for the population-level changes that result from them. This model allows us to compare the likelihood of empirically-attested changes in definite and indefinite articles in multiple languages under different assumptions on the way in which individuals learn and use language. We find that accounts of language change that appeal primarily to errors in childhood language acquisition are very weakly supported by the historical data, whereas those that allow speakers to change incrementally across the lifespan are more plausible, particularly when combined with social network effects

    A Metagenomic Approach to Characterization of the Vaginal Microbiome Signature in Pregnancy

    Get PDF
    While current major national research efforts (i.e., the NIH Human Microbiome Project) will enable comprehensive metagenomic characterization of the adult human microbiota, how and when these diverse microbial communities take up residence in the host and during reproductive life are unexplored at a population level. Because microbial abundance and diversity might differ in pregnancy, we sought to generate comparative metagenomic signatures across gestational age strata. DNA was isolated from the vagina (introitus, posterior fornix, midvagina) and the V5V3 region of bacterial 16S rRNA genes were sequenced (454FLX Titanium platform). Sixty-eight samples from 24 healthy gravidae (18 to 40 confirmed weeks) were compared with 301 non-pregnant controls (60 subjects). Generated sequence data were quality filtered, taxonomically binned, normalized, and organized by phylogeny and into operational taxonomic units (OTU); principal coordinates analysis (PCoA) of the resultant beta diversity measures were used for visualization and analysis in association with sample clinical metadata. Altogether, 1.4 gigabytes of data containing >2.5 million reads (averaging 6,837 sequences/sample of 493 nt in length) were generated for computational analyses. Although gravidae were not excluded by virtue of a posterior fornix pH >4.5 at the time of screening, unique vaginal microbiome signature encompassing several specific OTUs and higher-level clades was nevertheless observed and confirmed using a combination of phylogenetic, non-phylogenetic, supervised, and unsupervised approaches. Both overall diversity and richness were reduced in pregnancy, with dominance of Lactobacillus species (L. iners crispatus, jensenii and johnsonii, and the orders Lactobacillales (and Lactobacillaceae family), Clostridiales, Bacteroidales, and Actinomycetales. This intergroup comparison using rigorous standardized sampling protocols and analytical methodologies provides robust initial evidence that the vaginal microbial 16S rRNA gene catalogue uniquely differs in pregnancy, with variance of taxa across vaginal subsite and gestational age
    corecore