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Abstract

Languages emerge and change over time at the population level though interactions between indi-
vidual speakers. It is, however, hard to directly observe how a single speaker’s linguistic innovation
precipitates a population-wide change in the language, and many theoretical proposals exist. We
introduce a very general mathematical model that encompasses a wide variety of individual-level
linguistic behaviours and provides statistical predictions for the population-level changes that re-
sult from them. This model allows us to compare the likelihood of empirically-attested changes
in definite and indefinite articles in multiple languages under different assumptions on the way in
which individuals learn and use language. We find that accounts of language change that appeal
primarily to errors in childhood language acquisition are very weakly supported by the histori-
cal data, whereas those that allow speakers to change incrementally across the lifespan are more
plausible, particularly when combined with social network effects.

1 Introduction

Human language is a multiscale phenomenon. A language is shared by a large population, that
is, the speech community: it is a set of linguistic conventions, characteristic of the population
as a whole. Yet language originates in individuals. Individuals in a population use language to
achieve specific communicative goals, and through repeated interactions there emerge the linguistic
conventions of the speech community. These conventions also change over time, and as speech
communities split, the linguistic conventions of the speech communities diverge, leading to variation
across languages.

How does the behaviour of individual speakers lead to change in linguistic conventions and ulti-
mately the emergence of linguistic diversity? It transpires that this is one of the most debated
questions in the study of language change for at least a century [1]. A widely-held view is that the
locus of language change is in child language acquisition, in particular the process of inferring a
grammar that is consistent with the sentences that have been heard [2–5]. Where these sentences
do not fully specify a grammar, a child can infer a different grammar from its parents. If enough
children infer a different grammar, then the language changes as the generations succeed each
other. Variations on this basic idea exist, for example, where a child may have multiple grammars
representing old and new linguistic variants, with the relative weighting of the two grammars shift-
ing across generations [4]. A competing account is the usage-based theory [6–9], where linguistic
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innovation occurs at any point in a speaker’s lifespan, and speakers vary the frequencies that they
use different structures incrementally across the lifespan [10–13].

One reason that this question has not been resolved during the century-long debate is that direct
evidence of the origin of a change that develops into a new linguistic convention is generally lacking.
Research in child language acquisition has demonstrated that children are very good at acquiring
and conforming to the conventions of the speech community. In fact, the primary research question
in child language acquisition is how children are so successful in mastering not only general rules
of language but also the many exceptions and irregularities in adult language conventions [14].
Child-based approaches argue that children find the patterns rapidly on the basis of specific innate
language structures, while usage-based approaches argue that child language acquisition is incre-
mental and general patterns are expanded gradually [15]. The fate of any innovations that are
produced in the acquisition phase tends not to be investigated in this line of research. Meanwhile,
sociolinguistic research on variation and change begins with a situation in which the novel variant
has already been produced, and in fact the novel variant is already changing in frequency on the
way to becoming a new linguistic convention. It is virtually impossible to capture the innovation
as it happens; linguists are always analysing situations in which the new variant is already present.

Hence linguists have tended to rely on indirect evidence that would shed light on the role of the
individual in language change. For example, it has been observed that the sound changes that are
produced by children—innovations, or “errors” from the perspective of adult grammar—are not
the same as the sound changes that have been documented in language history [16–21]. However,
the innovative variation produced spontaneously by adults in both sound and grammar is of the
same type that has been documented in language history [22, 23]. These observations support
the usage-based theory over the child-based theory. Also, while children are extremely good at
acquiring the linguistic conventions of adults, by late adolescence they develop into the leaders
propagating a novel variant through the speech community, which suggests that language change
does not originate in childhood [10,13,24,25].

Here we take a novel approach to addressing the question of the locus of language change in the
individual: we quantify and compare the plausibility of different theories of individual behaviour
in producing population-level language changes and the resultant worldwide diversity of language
traits. We achieve this by introducing a mathematical model that allows us to test a variety of
hypotheses about how individuals ultimately bring about language change at the population level.
The model is applied to diachronic and crosslinguistic data of one common type of language change,
the grammatical evolution of definite and indefinite articles, such as English the and a respectively.
The evolution of articles can be analysed as a cycle of states in which a language without an
article may develop an article which may then disappear, allowing a simple unidirectional model
of innovation and propagation of a change in a finite set of states. We draw on data of attested
changes in definite and indefinite articles for 52 languages, and on the cross-linguistic distribution
of article states (620 languages for definite articles, 534 languages for indefinite articles; see below
for further details).

Our model allows us to access a very wide range of different individual-level processes of language
learning and use which appear in different combinations, whilst remaining amenable to mathemati-
cal analysis with methods from population genetics [26]. Specifically, we can estimate the likelihood
of our set of empirical language changes at the population scale, given a certain set of assumptions
on the behaviour at the individual level. This then means we can determine the regions within
this model space that have the strongest empirical support. As we will show below, we find that
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explanations of language change that appeal exclusively to childhood language learning receive con-
siderably less support than those that allow incremental change across the lifespan. Our analysis
further suggests that the complex structure of social networks—in which the degree of influence
that different speakers may have over others is highly variable—may play an important role in the
diffusion of linguistic innovations.

2 Data and methods

In this section we first set out empirical properties of changes in articles that guide us towards a
statistical model of language change over historical time at the population scale. The basic picture,
illustrated in Fig 1a, is one in which the population is initially at some stage of the cycle, for
example, the situation where there is no definite article (stage 0). As a consequence of individual
speaker innovations, an article is occasionally introduced into the population by recruiting a pre-
existing word for the article function. This is indicated by diamonds in the figure. In later stages,
different linguistic processes lead to a divergence in form, reduction of that form to an affix and the
loss of the form. Eventually, one of the innovations propagates so that its frequency, defined as the
proportion of relevant contexts in which the innovation is used, rises to 100%. Once this occurs,
the next stage of the cycle has been reached and the process begins afresh. Following [26], we refer
to this population-scale model as an origin-fixation model : the introduction of an innovation that
successfully propagates (denoted by a circle in the figure) is referred to as origination, and the
point at which it reaches a frequency of 100% is called fixation.

This population-scale process is the product of interactions between individual speakers in the
population, that is, acquisition or use, or a combination of the two. These interactions are illus-
trated schematically in Fig 1b and will be discussed in detail in the second part of this section.
The individual-based model is very similar to the Wright-Fisher model in population genetics (see
e.g. [27]), and we refer to it as such. In this model, each speaker is characterised by the fre-
quency with which they use an innovation in the relevant linguistic context. The Wright-Fisher
and origin-fixation models are connected by averaging over the individual frequencies to obtain
the corresponding frequency at the population level. This then provides a quantitative model for
language change over historical timescales that is grounded in individual speaker interactions.

2.1 Language change at the population level

2.1.1 Empirical properties

We draw on two sources of data to characterise language change at the population level: (i) a sur-
vey of documented instances of historical language change (detailed in Appendix A); and (ii) the
typological distribution of the current stage in the cycle across the world’s languages (as recorded
in the World Atlas of Language Structures, WALS [28]). As stated in the Introduction, we focus
on definite and indefinite articles for this analysis. There are a number of reasons for this. First,
the evolution of articles predominantly follows a single cycle of grammaticalisation. Definite ar-
ticles are predominantly derived from demonstratives such as that [29], and indefinite articles are
predominantly derived from the numeral one [30]. Both articles proceed to being affixed and then
disappear. Second, articles are unstable: several find articles to rank among the least stable of
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Figure 1: (a) Origin-fixation model at the population scale, showing a transition between two
stages of a grammaticalisation cycle (set out in Table 1). Innovations are repeatedly introduced
to the population; most fail (diamonds), but some successfully originate a change that propagates
and goes to fixation (circles). The fixation time TF is a random variable (see text). (b) Underlying
individual-based (Wright-Fisher) model. Individuals are characterised by the frequency with which
they use the innovation (orange portion of pie charts). In the case shown, individuals update
their innovation frequencies by retaining a fraction 1 − ε their existing value, and acquiring the
remaining fraction ε through exposure to one other member of the speech community. In the
figure, ε = 1

2 for illustrative purposes. The two levels of description are connected by averaging
over the individual speaker-level innovation frequencies in the Wright-Fisher model to obtain the
population-level frequency plotted for the origin-fixation model.
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Definite Indefinite

State Description Number Description Number

0 No article 243 No article 296

1 Same as that 69 Same as one 112

2 Distinct word 216 Distinct word 102

3 Affix 92 Affix 24

Table 1: Typological distribution of definite and indefinite articles. The number of languages in
each state is taken from [28].

a large set of features [31–33]. This means that our historical survey includes many documented
instances of multiple stages in the article grammaticalisation cycle, which in turn leads to a more
sensitive likelihood-based analysis than is possible when changes are rare. Finally, this instability
implies that the current distribution of stages in the cycle across languages is likely to be close to
the stationary distribution, which simplifies the analysis. Although articles are at one end of the
stability spectrum, we expect that similar results to those reported below would be found for more
stable features: we return to this point in the Discussion.

We divide the stages of the cycle following the classification of WALS Features 37A and 38A [28]:
(0) no explicit article; (1) use of that and one for definite and indefinite article meaning respectively;
(2) use of a distinct word usually derived from that or one for the article; and (3) use of an affix.
WALS provides the current crosslinguistic distribution of these four stages for definite and indefinite
articles (see Table 1). One can also look at the joint distribution of the two features to establish
whether they are correlated. A χ2 test on the contingency table indicates that the features are
unlikely to be independent (p < 10−6; although the conditions for the validity of the χ2 test do not
strictly apply, this level of significance was confirmed by a Monte Carlo sampling procedure).

We collected data on the documented history of articles in 52 languages from multiple sources
(see Appendix A), and divided their history into the same four stages. Importantly, at any given
point in time, one of these conventions typically dominates; over time the dominant convention
changes to the next in the sequence 0–3 above, before returning to stage 0 via loss of the article.
In our analysis of the 52 languages, we find only a single instance of a stage of the cycle that was
skipped. For each article and language, we can estimate the rate of change as m+1

t , where m is the
number of changes observed and t is the observation period. (Technically, this is the mean of the
posterior distribution over rates when the prior is uniform and the changes assumed to occur as a
Poisson process). We plot the distribution of these rates for each article in Fig 2. This shows that
the median rate of change is roughly once every 1000 years and that the distribution is somewhat
skewed towards slower rates of change. Our survey further suggests that the time taken for a change
to propagate is somewhat shorter than this, perhaps of the order of 100 years. We further find
that, for any given language, the number of changes in one article is not independent of the other
(χ2 test p = 0.00058; Monte Carlo estimate p = 0.0026). In the following we present results for
the two articles separately, as combining probabilities from the two analyses is not justified when
measurements are correlated.

2.1.2 Origin-fixation model

We use the historical properties of article grammaticalisation cycles, set out above, to flesh out
our statistical model of the process at the population scale. Recall from Fig 1a the picture of an
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Figure 2: Distribution of the number of changes in the definite (left) and indefinite (right) article
per 1000 years over the empirical dataset of 52 languages. The vertical dotted line indicates the
median of the distribution.

initial state in which all speakers are at a given stage of the cycle (say, stage 0), and as speakers
interact, instances of the next stage are repeatedly introduced. In a child-based model [2,4,5], the
next convention is introduced by children in the acquisition process. In the usage-based model, by
contrast, the next convention is introduced in language use by speakers of any age [7, 9, 22].

Under whatever mechanism one has in mind, only some of the individual innovations are replicated
sufficiently often that they become used by the entire population, reaching the frequency of 100%
that defines the state of fixation and therewith the onset of the next stage of the cycle [22,23,34].

We assume that the rate at which speakers introduce a specific innovation (e.g., introducing a
particular form for an article) in individual instances of acquisition or use is constant over time, as
is the probability that this innovation then propagates and reaches fixation. This means that at
any given stage in the cycle, origination events occur at a constant rate. In mathematical terms,
origination is a Poisson process with rate ωi when the population is in stage i of the cycle (and so
the innovations correspond to stage i+ 1).

Specifically, we take ωi = ω̄
4fi

, where fi is the fraction of languages currently at stage i in the cycle
(Table 1). This choice ensures, for any value of the parameter ω̄, that the stationary distribution
of the origin-fixation is one in which the probability of being at stage i of the cycle is fi, and
consequently matches the WALS distribution (although our conclusions do not depend on this
being the case). By including the factor 4 (i.e., the number of stages in the cycle) ω̄ can be
interpreted as a mean origination rate obtained by averaging over one complete cycle. In general
we will treat this rate as a free parameter (see Results, below).

Once the originating innovation has entered the population, it takes a time TF , called the fixation
time to become adopted as the convention by all speakers in the population. In origin-fixation
models applied to the invasion of mutant genes in a biological population [26, 35], the origination
process is generally much slower than the fixation process, and TF is typically set to zero. This is
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Figure 3: Approximation of the fixation time distribution obtained numerically for the Wright-
Fisher model (dashed line) with a Gamma distribution given by Eq 2. In (a) the Wright-Fisher
model has N = 100 individuals and no selection. In (b) N = 150 and s = 0.01.

not appropriate in the application to language change: the historical survey above suggests that
TF is only one order of magnitude smaller than the time between the origination of a change.
Moreover, TF is unlikely to be exactly the same for each change, due to the unpredictability of
human interactions and individual speech acts.

We account for this unpredictability by drawing each fixation time TF from a probability distribu-
tion. The fixation time distribution can be calculated for certain individual-based models, such as
the Wright-Fisher model set out below [27,36]. However, the mathematical form is too complicated
to be of practical use, so we approximate it by the simpler Gamma distribution. This distribution
is a natural choice for a quantity that is required to be positive (like a fixation time), and whose
mean and variance can be controlled independently. In fact, we will arrive at the population-scale
model by setting these two quantities equal to those that derive from an underlying individual-
based model. Fig 3 shows the Gamma-distribution approximation to the fixation time distribution
obtained numerically for the Wright-Fisher model with and without a selection bias. Although the
Gamma distribution does not fit perfectly, it captures the location and width of the peak well, and
is preferable to simply assuming that TF is zero.

We now provide a formal mathematical definition of the origin-fixation model that is equivalent to
the verbal description above. Starting from stage i of the cycle, a time TO,i at which a change to
the next stage in the cycle is originated is drawn from the exponential distribution

PO,i(TO,i) = ωie
−ωiTO,i (1)

as is appropriate for a Poisson process. Then, the time TF from origination to fixation is drawn
from the Gamma distribution

PF (TF ) =
βα

Γ(α)
Tα−1
F e−βTF where α =

TF
2

σ2
F

and β =
TF
σ2
F

. (2)
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At this point, stage i+1 is entered, and origination of a change to stage i+2 can begin (by sampling
a Poisson process and Gamma-distributed fixation time, as above).

The crucial point is that once these distributions are specified, one can compute the likelihood of the
observed changes in our historical survey for any desired combination of parameters ωi, TF and σ2

F .
Specifically, we ask for the probability that a language in stage i at the beginning of the observation
period reaches stage j by the end of that period. The set of periods, changes, and procedure for
calculating the likelihood are detailed in the appendices. In the likelihood calculation, each language
is treated as independent of the others: we do however consider a mother and its daughters after
a split as separate languages, so that changes in the mother language are not included multiple
times in the sample. It is important to note that the origin-fixation parameters are not arbitrary,
but depend on the underlying behaviour of individuals. A specific choice of individual-based model
will lead to specific values of the parameters ωi, TF and σ2

F , as we establish below.

2.2 Language change at the individual level

2.2.1 Wright-Fisher model

We now set out a model of language behaviour at the individual level which allows us to determine
parameter values for the origin-fixation model in regimes of interest. We start with the fact that
all theories of language learning and use involve the linguistic behaviour of one individual in the
population being adopted (in some way) by another. Looking backwards in time, one can construct
a ‘genealogy’ that shows who acquired linguistic behaviour from whom, parallel to the inheritance
of genetic material under biological reproduction. It is well understood in population genetics that
many superficially different individual-based models of inheritance generate a common distribution
of genealogies [37]. Therefore, one obtains a generic and robust description of an evolutionary
process by selecting a specific individual-based model that is adapted to the context at hand. Here
we construct a model of the Wright-Fisher type [27] that allows us to manipulate key properties of
the individual speaker, such as how often they can change their behaviour (though learning or use,
as appropriate), whether biases towards or against the innovation are operating, and which other
members of the speech community they interact with.

The basic structure of this model is shown in Fig 1b. Each circle in the figure represents an
individual’s linguistic behaviour at a given point in time. Each uses the existing convention (stage
0 in the figure) some fraction of the time, and the incoming innovation (stage 1) the remaining
fraction of the time. As in the origin-fixation model, we assume that at most two linguistic variants
are widely used at any given time. A variable xn specifies the relative frequency (in the range 0
to 1 inclusive) that speaker n uses the innovation. For example, the left-most speaker in the figure
is using the innovation in around x1 = 1

3 of the relevant contexts at time t. In this work, we take
xn to be an average over occurrences of a particular form of the article in a general Noun Phrase
construction that expresses (in)definiteness of the referent of the Noun Phrase. The forms are: no
article; article identical to a source form (demonstrative for definite article, the numeral ‘one’ for
indefinite article); article distinct from source form; and article attached to noun. Although this
general construction may be made up of more specific subtypes of Noun Phrase constructions, there
is reason to believe that a regular trajectory of change emerges from the aggregation of occurrences
over subtypes [38].
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In the traditional Wright-Fisher model, xn takes only the extremal values 0 or 1. In a linguistic
context, this corresponds to classic child-based models [2, 3, 5] in which a speaker’s grammar is
specified in terms of binary parameters. Other models allow for intermediate values of xn: these
include variational learning [4] and usage-based [15] models.

The innovation frequencies xn are updated at a rate R for each of the N speakers in the population.
We define the update rule in a way that includes the child- and usage-based models as special
cases. What these have in common is that, in an interaction, each individual is exposed to the
behaviour of one other speaker in the population. Each then replaces a fraction ε of their stored
linguistic experience with a record of the variant that was perceived in this interaction. That is,
x′n = (1− ε)xn + ετ , where x′n is the updated innovation frequency, and τ = 1 if the innovation was
perceived in the interaction, and τ = 0 otherwise. Fig 1b illustrates this update for the case ε = 1

2 .

The child-based model is obtained when ε = 1. The update then corresponds to a child being
exposed to the behaviour of a parent, applying some learning rule to determine if the grammar of
the language corresponds to the convention or the innovation, and setting x = 0 or 1 accordingly.
Importantly, the learning rule can allow the child to infer a grammar that is different from that
of the parent: cue-based learning [39] is one mechanism that allows for this. A general model for
such mechanisms can be obtained by introducing a probability ηi that, given a behaviour that is
consistent with the parent holding grammar i in the cycle, the child nevertheless adopts grammar
i+ 1 (for example, because the sentences produced by the parent are more consistent with the next
stage of the grammaticalisation cycle). In the child-based model, the appropriate choice for the
update rate R would be once per generation. Under these conditions, the timescale of the cultural
evolutionary process of language change is necessarily tied to that of biological evolution (although
the two processes differ in other respects, for example, the number and identity of parents).

By contrast, the usage-based model allows for the cultural evolutionary dynamics to proceed more
quickly than their biological counterparts, as individuals interact many times in the course of a
generation. However, the impact of each interaction is likely to be smaller, implying that the
parameter ε that quantifies this impact should be small. Fig 1b illustrates the case of ε = 1

2 , in
which after the update (time t + ∆t), half of the usage frequency derives from their behaviour
before the interaction (light shading in the figure), and the other half (dark shading) corresponds
to whether a conventional or innovative utterance was perceived in an interaction with the speaker
shown by the connecting line. As in the child-based model, there is a small probability ηi that a
conventional behaviour is perceived as an innovation. This can represent a variety of processes that
might apply in single instances of use, e.g., auditory and articulatory constraints [40,41] or cognitive
biases [41–43], along with indeterminacy in inferring a phonological form [22,34] or meaning [23,44],
that may favour one construction over another (see e.g. [7] for an extended discussion of innovation
in language change).

To complete the description of the Wright-Fisher model, we need to specify how the interlocutor—
the speaker who provides the linguistic data to the learner (or listener)—is chosen. There are two
components to this: (i) a social network structure; and (ii) a possible biasing of interlocutors based
on their linguistic behaviour. We describe these in turn.

The social network is set up so that speaker i has zi immediate neighbours, with zi drawn from
a degree distribution pz. Thus different individuals can have different numbers of neighbours. In
the absence of the bias, each neighbour is chosen as an interlocutor with equal probability in an
interaction. A generic model for social networks is the power-law degree distribution pz ∝ z−(1+ν)

in which the exponent ν controls the heterogeneity of the network. Values of ν > 2 are regarded

9



ν=5.6 ν=1.2

Figure 4: Instances of random networks with different degree exponents ν. The case ν > 2
(left) corresponds to a homogeneous network in which individuals all have a similar number of
neighbours. The case ν < 2 (right) is heterogeneous: the central individuals are well-connected
whilst the peripheral individuals are not.

as homogeneous, in the sense that innovations spread in the population in the same way as on a
network in which all speakers have the same number of neighbours (even though there is variation).
When ν < 2, the networks become increasingly heterogeneous as ν is decreased: these feature a
small number of highly-connected individuals and a large number of relatively isolated individuals.
Evolutionary dynamics tend to run faster on heterogeneous networks [45–47], and there is some
evidence that human social networks are heterogeneous (1.1 < ν < 1.3, [48–50]). Fig 4 illustrates
the distinction between homogeneous and heterogeneous random networks.

The interlocutor bias is implemented by choosing a neighbour m with a probability proportional
to 1 + sxm instead of uniformly. The selection strength s serves to favour (if s > 0) or disfavour
(if s < 0) the innovation, which may originate in one of a number of processes. For example, in
the variational learning framework [4], there is a systematic bias towards a grammar that parses
a larger number of sentences. In a sociolinguistic setting, association between a linguistic variant
and a socially prestigious group may lead to a bias towards (or against) that variant [10, 51]. The
case s = 0 describes a neutral model for language change, which has been discussed in the context
of new-dialect formation [52,53].

We emphasise that a large number of models for language learning and use that have been discussed
in the literature fall into the Wright-Fisher class, even though they may differ in detail and may
not be presented as such. A non-exhaustive list includes those that appeal to cue-based learning
[39], Bayesian learning from one or more teachers [54–56], variational learning [4] and usage-based
models [57]. Moreover, the Wright-Fisher model has been used as a phenomenological model for
changes in word frequencies [58–60].

We conclude this section with a formal mathematical specification of the Wright-Fisher model. The
distribution P (x, t) of the innovation frequency, x, at the population level, at a time t after it is
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Wright-Fisher model Origin-Fixation model

Symbol Meaning Symbol Meaning

N speech community size ωi origination rate

ν social network heterogeneity TF mean fixation time

R interaction rate σ2
F variance in fixation time

ε interaction impact

ηi innovation rate

s selection strength

Table 2: Parameters in the individual-based Wright-Fisher and population-level Origin-Fixation
models. The parameters in the Origin-Fixation model that characterise the dynamics at the popu-
lation scale can all be expressed in terms of those relating to the behaviour of individuals (see Data
and Methods).

originated, is generally well-described by the forward Kolmogorov equation

TM Ṗ (x, t) = −s[x(1− x)P (x, t)]′ +
1

2Ne
[x(1− x)P (x, t)]′′ (3)

in which a dot and prime denote derivatives with respect to t and x, respectively [27, 61]. The
parameters TM , s and Ne correspond to a memory lifetime, an innovation bias and an effective
population size, respectively. We emphasise that this equation applies between successive origina-
tion events, and describes the process by which the innovation propagates (rises to x = 1) or fails
(falls to x = 0). Therefore the origination rate does not appear in this equation. However, it does
enter into a correction factor, set out in Appendix D.2, that accounts for the possibility that a
second origination occurs before either of these endpoints is reached.

The main difference between models within the Wright-Fisher class is how TM , s and Ne relate to
the parameters that apply to a specific model. In the present case, which has the set of parameters
specified in Table 2, we have TM = 1/(Rε), s is as specified above and Ne = N(z2/z2)/ε in which
z is the number of neighbours a speaker has on the social network, and the overline denotes an
average over speakers [45–47].

In Appendix E.3 we demonstrate that Eq 3 applies more generally than to the specific agent-based
model set out here, and furthermore that the quantities TM , s and Ne have a similar interpretation.
This is achieved by considering a model that has many additional features—for example, ongoing
birth and death of speakers, changes in social network structure and variation in interaction rates
between speakers and over time—and showing that the changes in the innovation frequency x over
short time intervals are the same as those described by Eq 3. Therefore the results we present
below do not rely on this model being an accurate representation of language learning and use.

2.2.2 Connection to origin-fixation model

We connect the individual to the population scale by determining how the parameters in the origin-
fixation model (also specified in Table 2) relate to those in the Wright-Fisher model. The origination
rates ωi are given by the formula ωi = NRηiQ(ε/N), where N is the number of speakers in the
speech community, ηi is the individual innovation rate per interaction, R is the interaction rate and
Q(x0) is the probability that an innovation goes to fixation starting from some frequency x0. In
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the Wright-Fisher model, this initial frequency is x0 = ε/N , because exactly one speaker uses the
innovation with probability ε. We then have

Q
( ε
N

)
=

1− e−2Nesε/N

1− e−2Nes
. (4)

This result is obtained by solving the backward equation that corresponds to Eq 3 (see [27, 36]
and Appendix E). We see that the effective population size, Ne (which depends on the actual
population size N , the update fraction ε and the social network structure) plays an important
part in determining the probability that an innovation propagates. It also determines how quickly
an innovation may reach fixation. Numerical methods, described in Appendix D with the code
available at [62], are used to determine exactly how the mean and the variance in the fixation time,
TF and σ2

F , in the origin-fixation model depend on the Wright-Fisher model parameters. Here
we note that the characteristic timescale is of order TMNe when the bias s is small, and of order
TM ln(Ne) when it is large, which turns out to have important consequences for the plausibility of
the historical data for specific models of language learning and use in our analysis below.

In summary, then, our basic approach is to use the origin-fixation model to determine the likelihood
of an observed set of historical language changes. The parameters in this model are obtained from
an underlying Wright-Fisher model, so that we may understand—for example—which learning
rates, biases and social network structure are more or less well supported by the historical data. As
we have argued, our findings do not depend on the detailed structure of the Wright-Fisher model.
The crucial component is that a speaker’s behaviour can be represented by an innovation frequency
x, and that this is affected by learning from or using language with other members of the speech
community over time.

3 Results

We now compare the likelihood of the empirically attested set of language changes (detailed in
Appendix A) under different assumptions on the underlying behaviour of individuals in the re-
spective populations. An appropriate measure for likelihood comparison is the Akaike Information
Criterion, corrected for small sample sizes (AICc, [63]), as the models we consider have different
structures. It is defined as

AICc = 2k − 2 ln(L) +
2k(k + 1)

n− k − 1
(5)

where k is the number of free parameters in the model, n is the number of observations and L is the
likelihood of those n observations, as determined from the origin-fixation model. An observation is
the sequence of transitions between different stages of a grammaticalisation cycle over a specified
historical time period for a given language, as tabulated in Appendix A. The number of observations
is therefore the number of languages in the sample (52 for both articles).

The difference in the AICc value between two models, denoted ∆AICc, gives a measure of how
much the model with the lower AICc score is preferred over the other. Models with more free
parameters (higher k) can be dispreferred even when the data likelihood increases as a result of
increasing parameters. For nested models, this increase is inevitable, but for models with different
structures, AICc remains valid as it is based on general information theoretic principles [63]. Given
two candidate models and a sufficiently large number of observations, e∆AICc/2 provides an estimate
of the probability that the model with the higher AICc better describes the data than that with
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the lower value. There is some freedom to choose the value of ∆AICc at which one discards the
inferior model. In this work we take a value of around 10 (corresponding to a likelihood ratio of
around 150) as indicative of the model with the higher AICc becoming too implausible to consider
further. However since there is some flexibility in this regard, we will generally show the dependence
of ∆AICc on model parameters, so one can gauge the scale of the likelihood differences between
models. It is important to note that such model comparisons do not in themselves validate the
superior model: for this one needs to consider goodness-of-fit measures as well [63].

We begin by establishing a baseline against which different individual-level mechanisms of language
change will be compared. In this baseline model, language changes occur at the population level
as a Poisson process. We emphasise from the outset that this is not an individual-based model of
language change: changes in the population occur autonomously without reference to individual
speakers. Nevertheless this model helps to illustrate our statistical approach and, as we discuss
below, it also provides valuable insights into why particular individual-based mechanisms are found
to provide more or less plausible explanations of historical language changes at the population level.

3.1 Poisson baseline

In the baseline model, we assume that a change from stage i to stage i+ 1 of the cycle occurs as a
Poisson process at a constant rate ωi = ω̄/(4fi) in each population, where fi is the fraction of the
world’s languages that is currently at stage i of the cycle (Table 1). This factor of fi ensures that the
stationary distribution in the baseline model matches the contemporary WALS distribution. This
model is equivalent to the origin-fixation model of Fig 1a, with instantaneous fixation (TF = 0).
This model has one free parameter, the mean rate of language change, ω̄, which is estimated by
maximising the likelihood of the data.

The maximum likelihood value of ω̄, the corresponding AICc, a classical p-value and two goodness-
of-fit statistics are presented in Table 3. The p-value is the probability, within the model, of
all possible transitions between stages of the relevant grammaticalisation cycle over the relevant
historical period for each language whose likelihood is lower than the transitions that actually
occurred. This p-value can be interpreted in the usual way, with a low p-value indicating a likely
departure from the model assumptions.

By itself, an AICc score (or differences between them) does not furnish any information about
how well a particular model fits the data. To gain an insight into goodness-of-fit, we consider
the overdispersion of two random variables X (specified below) which quantifies the extent to
which observed deviations of X from their mean values X̄ within the model are consistent with
the expected deviations. For a given observation, the overdispersion is defined as OX = (X −
X̄)2/Var(X), that is, the ratio of the observed square deviation to its expected value. If the
overdispersion is close to 1, the deviations are as expected, and we conclude that the distribution
of X is well-predicted [63]. For a given language, the two quantities X are: (i) the total number
of language changes in the historical period; and (ii) a binary variable that equals 1 if at least one
change occurred, or 0 otherwise. We average over all languages in the sample to obtain the single
measure that is presented in Table 3.

The low overdispersion scores suggest that this baseline model provides a good description of
changes in the indefinite article, whilst it performs less well for the definite article. A likely source
of this difference is the larger number of languages whose definite article changes rapidly compared
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Definite Indefinite

ω̄ (×10−4 yr−1) 6.05 5.67

AICc 128 93.6

p 0.0097 0.16

Overdispersion (number of changes) 2.7 1.1

Overdispersion (at least one change) 1.1 1.0

Table 3: Fit of a Poisson process to article grammaticalisation histories. ω̄ is the maximum
likelihood rate of change and AICc the corrected Akaike information criterion. p is the cumulative
probability of events less likely than the observation. Overdispersion measures goodness of fit, with
values closer to 1 indicating a better fit. p and overdispersion are estimated from 106 Monte Carlo
simulations of the process.

to the indefinite article, as can be seen from Fig 2. It is further possible that assumptions made
about the data (for example, that the distribution of articles is stationary, that changes in different
languages are independent, or, indeed, that the fixation time can be idealised to zero) do not
strictly hold. We also remark that the second overdispersion measure is less sensitive than the first:
however, it turns out that this is easier to calculate for individual-based models, and we will take
a large deviation of this measure from 1 as providing a strong indication of a poor fit to the data.

It is remarkable that this simple model seems to provide a reasonably good fit to the data, partic-
ularly in view of an ongoing discussion about the role of population size in language structure and
change [64–67] (a point we return to in the Discussion). The Poisson model explicitly assumes that
the phenomenological rate of change ω̄ is constant across all populations, and that each language
change is able to propagate rapidly from origination to fixation. These observations suggest that
we should expect to find more plausible accounts of historical language change in individual-based
models whose emergent population-level dynamics share these properties.

3.2 Child-based models of language change

We now examine the constraints on the population-level dynamics of language change that arise
from assuming that language change occurs primarily through the process of childhood language
acquisition (e.g., [2, 4, 39, 54, 56, 68, 69]). As noted above, such theories imply that the rate, R, at
which a grammar can be updated is once per human generation, which we take to be once every 25
years (i.e, R = 0.04yr−1). In the case where learning causes children converge on a single grammar
(i.e., categorical use of one of the four article variants), we take ε = 1. In the case of variational
learners (e.g. [4]), speakers can entertain mixtures of grammars: this can be realised with ε < 1.
We consider the categorical case first.

The literature on child-based theories rarely refers to population structure. We therefore begin by
assuming that populations are homogeneous: that is, that each child learns from roughly the same
number of (cultural) parents, and conversely, that each adult provides linguistic input to roughly
the same number of (cultural) offspring. Under these conditions, the emergent origination rates
and fixation times in each population depends on a core size that is equal to the population’s actual
size (see Methods). It is therefore necessary for us to estimate the population (speech community)
size for each language over the historical period for which empirical data exist. In Appendices B
and C, we set out the procedure that we use to estimate the mean population size for each language
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Figure 5: ∆AICc (panels a–c) and binary overdispersion (c–f) for negative (a and d) and positive
(b, c, d and f) selection strength s within a child-based learning paradigm. The smallest values
of both measures (which indicate better fits to the data) are obtained for strong positive selection
(s > 1, highlighted in panels c and f which has a larger vertical scale). The ∆AICc values are far
away from the shaded zone where ∆AICc ≤ 10 and the evidence in favour of the child-based model
starts to become comparable with that of the baseline.

over its recorded period of change. This is then used as the core population size for that language
in our analysis.

This leaves just two unconstrained parameters, the mean rate η̄ at which innovations arise in indi-
vidual instances of language learning (the “error” rate, in the child-based model), and the selective
bias s in favour of the innovation. Our strategy is to choose the value of η̄ that maximises the
likelihood of the data set given all other parameter settings, and to plot ∆AICc with respect to the
Poisson baseline model as a function of the selection strength s so that we can see where the support
for the child-based model is strongest. Here, we treat the individual-based model as the candidate
model, so ∆AICc = AICc(candidate) − AICc(baseline) is positive when the evidence supports the
baseline model, and negative when the evidence supports the candidate model. The resulting plot
is shown in Fig 5, along with a corresponding plot of the second of the two overdispersion measures
considered for the Poisson baseline model.

We find that across the entire range of selection strengths s, support for the child-based model is
very poor. The greatest plausibility (relative to the Poisson baseline) is obtained where ∆AICc is
smallest: this happens in the limit of infinite selection strength. As can be seen from the rightmost
panels of Figure 5, the values of ∆AICc in these regions are still rather large, reaching asymyptotes
at 204 and 58.4 for definite and indefinite articles, respectively (both to 3 s.f.). This corresponds
to the evidence in favour of the candidate model being 1044 (definite) and 1013 (indefinite) times
smaller than the baseline.

However this comparison with the Poisson baseline is not entirely fair, as this phenomenologi-
cal population-level dynamics may not be accessible for any combination of parameters in the
individual-based model. For this reason we must also check the goodness-of-fit via the overdisper-
sion measure. Again we find anomalously large values, the asymptotic values being 31300 (definite)
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and 226 (indefinite), suggesting that the assumptions made about the underlying dynamics of lan-
guage change are wildly inconsistent with the historical data. Throughout this investigation, we
found that ∆AICc correlates strongly with goodness-of-fit, and so in the rest of this work we show
only ∆AICc, and investigate whether alternative assumptions on the individual-level behaviour are
capable of delivering a much smaller ∆AICc.

To focus this investigation, it is instructive to understand why the empirical data have such a low
likelihood (and therewith high ∆AICc) within the child-based model. As previously noted, the
effective population size (which here, is the same as the actual population size) is of fundamental
importance in population genetics models [27]. When the selection strength, s, is large, each
individual innovation is likely to propagate, and the mean origination rate (at the population level)
increases linearly with the population size. On the other hand, when the selection strength is small,
the origination rate is roughly constant but fixation time TF is proportional to the population size.
Since the historical average population sizes in the empirical data set range across six orders of
magnitude, then either the origination rate or the fixation time exhibits this wide variation in the
child-based model. The fact that the Poisson baseline, which has no dependence on population
size at all, apparently provides a much better fit, suggests that individual-based models in which
origination rates and fixation times vary more weakly with population size than in the child-
based model should be more favoured. Variants of the child-based model in which grammars are
probabilistic [4] do not fall into this class: these have ε < 1, which implies a fixation time N/ε2

when s is small. That is, these models are more sensitive to population size than models that allow
children to acquire only a single grammar.

3.3 Usage-based models of language change

In a usage-based model, a speaker’s grammar may change across their lifespan [15], in principle
in response to every utterance they hear (i.e., up to around 107 times a year [70]). This has the
potential to weaken the sensitivity to population size: if a large number of interactions between
speakers is required for a change to propagate through the population, then the higher interaction
frequency in the usage-based model gives the change a greater chance of going through on the
attested historical timescales. However, this effect may be tempered by the fact that the change to
each grammar is smaller in each interaction, which has the opposite effect.

To explore the interaction between an increased interaction rate R, and lower impact on the gram-
mar ε, it is convenient to work with the memory time TM = 1/(Rε), which is the expected lifetime
of a single item of linguistic experience in the speaker’s mind. Considering again the case of ho-
mogeneous populations, we compare in Fig 6 the class of usage-based models with no selection
(s = 0) over the reasonable range of R at fixed memory times TM = 1/(Rε) against the baseline
model. Note that the dotted parts of the curves correspond to an unphysical parameter value
of ε > 1. From these ∆AICc plots, we see that our intuition that an increased interaction rate
allows changes to go through more easily is correct. We achieve greater plausibility than the most
plausible child-based model when memory times are short, specifically less than one hour. We note
that we can approach the plausibility of the Poisson baseline if we allow TM to be as short as one
minute.

Although shorter memory times in the individual allow for a faster rate of change in the popula-
tion, the basic property of fixation times being proportional to the population size is unaffected.
This is why we find that individual memory times must be very short (perhaps unreasonably so,
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see Discussion) to improve on child-based models. Furthermore, there is stronger sensitivity to
population size when selection is operating (s 6= 0), which leads to lower plausibility gains with
respect to the child-based model than in the neutral case (s = 0). This suggests that one needs to
appeal beyond merely shorter memory times to explain the apparently weak effect of population
size on article grammaticalisation cycles.

3.4 Social network effects

Studies of the Wright-Fisher and related models on heterogeneous networks [45–47] show that these
can weaken the effect of population size on characteristic timescales of change. As discussed in the
Wright-Fisher model section, above, we model social networks as those with a power law distribution
P (z) ∼ z−(1+ν). We recall that the exponent ν controls the heterogeneity of the network, with lower
values of ν corresponding to greater heterogeneity: see also Fig 4. On such networks, the mean
fixation time is proportional to an effective population size Ne ∼ N2−2/ν which is less than the
actual size N if 1 < ν < 2 [45–47]. In the context of language change, we can think of Ne as
measuring the size of a core population who exert much greater influence over the periphery than
vice versa. Empirical studies of large networks (like friendship networks) provide some support for
this power-law distribution with an exponent ν in the range 1.1 < ν < 1.3 [48–50].

In Fig 7 we examine how the plausibility of both the child- and usage-based models investigated
above changes when individual speakers in the model are arranged on complex network structures.
This confirms our expectation that models in which timescales of change are less sensitive to popu-
lation size receive greater support from the data. As previously, the usage-based model provides a
more plausible description of language change than the child-based model; moreover, the range of
selection strengths and memory times over which a fit comparable to that provided by the Poisson
process is much larger than on homogeneous networks.

We see from Fig 7 that the most plausible models in the space under consideration are those in which
selection is relatively weak. This is consistent with recent observations [58–60] that the dynamics
of word frequencies appear to be subject to the evolutionary forces of both random drift and
selection (i.e., neither is so strong that it dominates the other). Moreover, a number of studies (e.g.,
[46,71,72]) have indicated that heterogeneity tends to lower the barrier to invasion of an infection,
mutation or innovation. This possibly points towards a picture whereby the different grammatical
structures that are attested cross-linguistically are somewhat similar in their fitness, but may
nevertheless replace one another over time in the systematic way that is observed historically due
to the manner in which human societies are structured.

4 Discussion

The aims of this work were twofold. First, we established how specific assumptions on the way
in which individuals learn and use language translate to language change at the population scale.
Second, we used historical data for the latter to identify which theories and mechanisms as to how
individuals change the language of their speech community have greater empirical support.

Our main result is that if we impose the constraints that arise from assuming that childhood
language learning is the driver of language change, there is no combination of the remaining free
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Figure 7: ∆AICc for models on heterogeneous social networks for the definite (panels a, c and e)
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parameters that provides a good fit to the empirical data. The observed changes are many orders of
magnitude more likely in regions of parameter space that correspond to other theories. The reason
why the support for the child-based theory is so poor lies in a strong dependence of characteristic
timescales at the population level on the underlying population size. If any selective bias in favour of
the innovation is weak, the time taken for a change to propagate through a large speech community
(the fixation time) is very much longer than the 100 years or so that is seen historically. If selection
is strong, changes propagate quickly but then the rate at which successful changes are originated
varies strongly with population size. The empirical data apparently show much less sensitivity to
population size than the child-based theory implies.

In fact, throughout this work, we have found that the baseline model, which has no dependence on
population size, fits the historical data well. One way to construe the baseline model is as changes
originating once every 1000 years or so in every population, with changes then propagating rapidly
through the population. This suggests that the mechanisms that have stronger empirical support
are those that have these characteristics.

We acknowledge that our analysis is based on a single pair of features (the definite and indefinite
articles) that are relatively unstable and are correlated. It is due to these correlations that we
treated them separately (rather than combining them together into a single likelihood measure,
which would assume independence). Nevertheless, comparison of the two articles is informative
about how sensitive the analysis is to the details of which languages undergo a specific sequence
of changes, as this does vary between the two articles. Overall, we find that it is the overall
rate of language change combined with its weak sensitivity to population size that most strongly
determines the plausibility of a given individual-based theory.

It is, however, possible that the dynamics of articles are unrepresentative of grammatical features
more generally, and that our conclusions therefore do not generalise. We argue that this is unlikely.
Regarding overall timescales of change, it is well established, by different analyses [31–33], that
articles rank amongst the least stable of grammatical features and that others change more slowly.
Basic word order lies at the opposite end of the spectrum, and the lifetime of given word orders
have been estimated as ranging from 1000–100000 years [73]. That is, these most stable structures
persist for a timescale that ranges from around the same order of magnitude as articles to two orders
of magnitude longer. A quick way to estimate the plausibility of the child-based theory for basic
word order from our findings for articles is to consider a generational turnover that is increased by
two orders of magnitude (i.e., from 25 years to around 3 months). Here we find a plausible account
is possible on sufficiently heterogeneous social networks (see Fig. 7). This implies that the child-
based theory could, at best, account for only the most stable grammatical structures, and does not
offer a single explanation for language change that applies across the stability spectrum. The rate
of population turnover imposes a fundamental minimum rate of language change which lies above
that for unstable features in the child-based account, but potentially below in the usage-based
account. Therefore the latter is capable of providing a common explanation for changes across the
full stability spectrum.

It is harder to establish whether the weak sensitivity to population size is a feature of other gram-
matical changes. A detailed record of the history of each feature of interest across many languages
is required for a conclusive assessment, data that is difficult to obtain (particularly for more sta-
ble features, where greater time depth is required to see a sufficiently large number of changes).
However, a number of studies that have directly examined the relationship between population size
and various aspects of language structure or change [64–67] have tended to conclude that where
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there is an effect, it is weak. For example, [67] reports rates of gain and loss that scale sublinearly
with the population size, consistent with the behaviour of Wright-Fisher models on heterogeneous
social networks. Moreover, the fact that different methods [31–33] of characterising the stability of
a feature with a single metric are broadly consistent suggests that they do not vary significantly
over space and time. Indeed, Wichmann and Holman [31] have argued that the notion of stability
is intrinsic to a feature and does not vary geographically. Given these considerations, it seems rea-
sonable to conclude that weak population-size dependence is a generic property of language change,
and not peculiar to articles.

We have identified two individual-level mechanisms that may contribute towards such a weak
effect of population size on the rate of grammatical change. The first of these is provided for by
usage-based accounts of language change which allow individuals to modify their behaviour across
their lifespan, not just in the childhood language acquisition period. With more opportunities for
individual behaviour to change per unit time, these theories allow changes to propagate through
large speech communities more quickly. If the bias towards the innovation (the selection strength,
s) is close to zero and the innovation rate per interaction is also small, changes at the population
scale can then occur at roughly the same rate in different speech communities.

In addition to small selection and innovation rates, this mechanism further requires a short memory
lifetime in comparison to the lifetime of an individual (days or less, depending on social network
structure). Taken at face value, such memory lifetimes may be considered unreasonably short. Here,
we advise caution. First, a short memory does not imply that individual speakers are continually
changing their behaviour: individual speakers can remain constant in their behaviour for as long
as those around them do. If innovations rarely propagate, then most speakers will be exposed to
existing conventions and continue to adhere to them, even though during a period of change they
may alter their behaviour relatively quickly, albeit in small increments. There is some evidence
that such changes can occur in older speakers as well as younger speakers, for example, in a study
of Montreal French [12]. Meanwhile, research on priming [74, 75] shows that individual linguistic
utterances can affect a speaker’s behaviour in interactions in the very short term before fading
away. It would be worth understanding whether such effects could effect more permanent changes,
for example, when a change is in progress in a speech community, as this might then imply a
shorter effective memory time at the individual level than intuition grounded in everyday experience
suggests.

The second mechanism that can reduce the sensitivity of grammatical change to population size
are social network effects. Specifically, heterogeneous networks, in which a small number of well-
connected speakers interact with a large number of poorly-connected speakers, lead to an effective
population size (and therewith a characteristic timescale for change) that increases sublinearly with
population size. Since this heterogeneity is a feature of certain social networks (e.g., those relating
to phone calls, movie collaborations and social media [48–50]), it is reasonable to assume that this
is a property of human social interactions more generally. It is interesting to note that sublinear
relationships between rates of change and population sizes have been reported in other empirical
studies of language change [64, 67]. Heterogeneous social networks offer one possible explanation
for this phenomenon. To investigate this possibility further, it would be interesting to obtain more
concrete information about the structure of linguistic interactions as well as how these stratify by
age. If it were found, for example, that children’s networks are more homogeneous than adult’s,
then this would point towards adults playing a key role in propagating an innovation throughout
the speech community.

21



Although our statements about the relationship between individual behaviour and population-level
change are grounded in a specific model of individual behaviour, we do not expect them to change
if a different model was used. The reason for this is that any model that involves individual agents
basing some or all of their future behaviour on that displayed by others (whether through learning
or use) is expected to fall into the Wright-Fisher class [37]. The precise relationship between
parameter values in the individual-based model and those in the population-level origin-fixation
model may vary between models: however, in any two models with similar memory lifetimes,
innovation biases and social network structures would be expected to have the same behaviour at
the population scale. In Appendix E.3, we demonstrate this in the case of an extended model in
which all properties vary between speakers, in which there is turnover in the population and social
networks change over time.

This is not intended to imply that every feasible influence on language change is contained within
the Wright-Fisher model used here (at least, at some level of abstraction). For example, we have
excluded the possibility of a conformity bias [76,77], wherein speakers suppress minority variants in
favour of those in the majority. Such a bias however makes it increasingly difficult for innovations
to propagate as the population increases in size, and therefore would be expected to exacerbate the
problems of sensitivity to population size. We have also assumed that factors influencing individual
linguistic behaviour are constant over space and time. Specifically, social factors like prestige effects
have been excluded, and it would be interesting in future work to establish whether these lead more
readily to plausible accounts of historical language change.
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Appendices: Details of data and methods

These appendices set out in detail the empirical data set on article grammaticalisation cycles that
was used in the main text, and in particular how a population size for each language was estimated.
We also provide the explicit mathematical expressions for the likelihood functions that were used
in the analysis, and explain in detail how we match up the dynamics of the Wright-Fisher model
(that applies at the individual level) to the origin-fixation model (that applies at the population
level).

A Empirical data set

Our empirical data set of 52 languages is derived from 84 sources that document instances of
article usage in different languages at different times. In Table 4 we summarise the stages of the
grammaticalisation cycles for the definite and indefinite articles that have been observed, along with
a historical time period that covers these observations. The quantities that enter the likelihood
analysis are the total length of the historical period, and the number of changes in the article
that occurred within it. In most cases, the beginning and end of each period corresponds to the
earliest and most recent record (in cases where the language is still spoken, the latter is the present
day). The exception to this is Hebrew, which was not spoken for a 1700-year period. In this case
we take processes of change to be halted during this period. In cases where a language split into
several daughter languages, we take the observation period for the parent language to end at the
time of split, and the daughters’ observation periods to begin. We also quote a measure of relative
population size (the weight of a language), which can be converted into an estimate of the true
population size using the procedure described in Appendix B below. These weights are obtained
from geographical population sizes as described in Appendix C below. Finally in this table we
record the relevant sources of historical language use so our characterisation of the historical data
can be verified as required.

Language Period Definite Indefinite Weight References

English 700CE – 2000CE 1,2 0,1,2 90.9 [78,79]
German 200CE – 2000CE 0,1,2 0,1 286 [80,81]
Common Scandinavian 1100CE – 1300CE 3 0 61.3 [82]
Icelandic 1300CE – 2000CE 3 0 1.00 [82]
Swedish 1300CE – 2000CE 3 0,1 29.3 [82,83]
Irish 800CE – 1600CE 2 0 26.2 [84,85]
Welsh 1100CE – 2000CE 2 0 1.85 [86,87]
Greek 850BCE – 2000CE 1,2 0,1 55.0 [88–91]
Latin 100BCE – 500CE 0,1 0 948 [92–94]
French 500CE – 2000CE 1,2 0,1 366 [92,93,95]
Romanian 500CE – 2000CE 1,2,3 0,1 53.5 [95]
Bulgarian 800CE – 2000CE 0,1,2,3 0 32.8 [96,97]
Russian 800CE – 2000CE 0 0 323 [98]
Egyptian 5000BCE – 700CE 2,3 0,1 181 [99–101]
Arabic 700CE – 2000CE 3 3,0 458 [102]
Hebrew 1200BCE – 200CE

1900CE – 2000CE 3 0 20.5 [103–105]
Persian 500BCE – 2000CE 0 0,1,2,3 130 [106–108]
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Language Period Definite Indefinite Weight References

Indo Aryan 700CE – 1000CE 0 0 2.51× 103 [109]
Bengali 1000CE – 2000CE 0,1,2,3 0,1,2,3 590 [109]
Assamese 1000CE – 2000CE 0,1,2,3 0,1,2,3 88.5 [109]
Hindi 1000CE – 2000CE 0 0 737 [109]
Gujarati 1000CE – 2000CE 0 0 118 [109]
Korean 900CE – 2000CE 0 0 82.1 [110]
Japanese 700CE – 2000CE 0 0 231 [111]
Chinese 1000BCE – 2000CE 0 0 3.39× 103 [112]
Classical Nahuatl 1500CE – 1600CE 2 1 22.1 [113,114]
Tetelcingo Nahuatl 1600CE – 2000CE 2,3,0 1 5.53× 10−3 [115]
North Pueblo Nahuatl 1600CE – 2000CE 2 1,2 0.111 [116]
Michoacan Nahuatl 1600CE – 2000CE 2,3,0,1 1 3.32× 10−3 [117]
Huasteca Nahuatl 1600CE – 2000CE 2,3,0,1 1 1.31 [118]
Yucatec Maya 1450CE – 2000CE 1 0,1 0.918 [119,120]
Quiche Maya 1400CE – 2000CE 1 1 2.15 [121,122]
Cakchiquel Maya 1500CE – 2000CE 1,2 1 1.15 [123,124]
Georgian 300CE – 2000CE 1,2,3,0 0 4.81 [125–127]
Armenian 400CE – 2000CE 2,3 0,1,2 7.21 [128,129]
Aramaic 950BCE – 700CE 3,0 0 28.9 [130]
Geez 400CE – 1000CE 0 0 12.1 [131,132]
Tigrinya 1000CE – 2000CE 0,1 0 10.6 [133,134]
Tigre 1000CE – 2000CE 0,1,2 0,1 1.51 [135]
Akkadian 2000BCE – 600BCE 0 0 43.7 [136,137]
Sumerian 3200BCE – 2000BCE 0 0 43.7 [138,139]
Tamil 250BCE – 2000CE 0 0,1 184 [140–143]
Tibetan 800CE – 2000CE 0 0 13.5 [144–146]
Mongolian 1250CE – 2000CE 0 0 15.4 [147,148]
Turkish 1200CE – 2000CE 0 1 173 [149,150]
Khmer 800CE – 2000CE 0 0 32.4 [151–153]
Colonial Quechua 1600CE – 1700CE 0 0 42.7 [154]
Ayacucho Quechua 1700CE – 2000CE 0 0 2.59 [154,155]
Imbabura Quechua 1700CE – 2000CE 0 0 0.683 [154,156]
Huallaga Quechua 1700CE – 2000CE 0 0 0.0399 [154,157]
Aymara 1600CE – 2000CE 0 0 8.55 [154,158,159]
Mapuche 1600CE – 2000CE 0 1 17.8 [154,160,161]

Table 4: Empirical dataset of historical language changes. Period: the historical periods over which
observations were made. Definite, Indefinite: Stages of the grammaticalisation cycles observed for
each article. Weight: relative historical average population size.

B Historical populations of geographical regions

We use a survey of population sizes across many regions of the world [162] to fit the following model
for the size Ni(t) of region i at time t, measured in years since 1BCE:

Ni(t) = wiN0g(t) . (6)
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In this model, N0 sets an overall scale, wi is a region-dependent weight that specifies its relative size,
and g(t) is a universal time-dependent growth function. This model amounts to an assumption that
populations in different regions of the world maintain constant ratios over the relevant historical
time period. Below we show that this model provides an estimate of a region’s population size that
is accurate to within a factor of 2.8 at a confidence level of 95%. The source data for this analysis is
provided in the S2 File as an MS Excel spreadsheet; the resulting weights are specified in Table 5.
Although not a particularly precise estimate, this variation of a factor of 2.8 is to be compared
with a factor of 3400 variation in the weights themselves, and an overall increase by a factor of 300
in population sizes from 5000BCE to the present day. Consequently this simple model captures
the range of population sizes and their changes over time rather well with a single parameter per
geographical region, and we do not feel there would be much to be gained from using a more refined
model.

Region Weight Region Weight

Ancient Egypt 181 Ireland 26.2
Arabia 105 Italy 288
Austria 41.2 Japan 231
Bolivia 18.3 Khmer Republic 32.4
Bulgaria 32.8 Korea 82.1
C Turkestan Tibet 53.9 Libya 12.1
Caucasia 40.1 Maghreb 125
Chile 17.8 Mexico 111
China 3.39× 103 Mongolia 11.4
Czechoslovakia 77.6 Nepal 56.0
Denmark 18.5 Norway 13.5
Ecuador 13.7 Pakistan India Bangladesh 2.95× 103

Egypt 114 Palestine Jordan 20.5
England Wales 92.7 Peru 39.9
Ethiopia 50.3 Poland 84.7
France 366 Romania 53.5
Germany 245 Russia In Europe 323
Greece 55.0 Sri Lanka 32.0
Guatemala 14.3 Sweden 29.3
Iberia 241 Syria Lebanon 38.5
Iceland 1.00 Turkey In Asia 230
Iran 130 Yugoslavia 81.5
Iraq 43.7

Table 5: Relative historical average size of each geographical region relevant to the languages in
the sample (all to 3 s.f.). These sizes are normalized such that the smallest such region (Iceland)
has a relative size of 1.

The weights and the unknown function g(t) are found by performing a linear least-squares fit to

ln(Ni(tj)) = ln(wi) + ln(N0) + ln(g(tj)) + εi(tj) , (7)

where Ni(tj) is the population size in region i at time point tj as recorded in [162], and the
parameters ai = ln(wi) and bj = ln(g(tj)) are varied to minimise the sum of square residuals
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Figure 8: Population sizes normalised by by the weight factor wi for each geographical region i.
The grey dots show observations recorded in [162]. The black squares are the mean population
size after normalisation has been applied to minimise the variance between different regions. The
smooth line is a degree 4 polynomial fit to the logarithm of the mean normalised population size.
See Table 6 for the coefficients in this polynomial.

εi(tj). This minimisation problem is underdetermined, and a unique solution is obtained after
fixing g(0) = 1 and wi = 1 for the smallest region in the sample (Iceland). This procedure yields
an overall scale N0 = 14600 (to 3 s.f.), and the weights wi are presented in Table 5. In Figure 8, we
plot the normalised population sizes Ni(tj)/wi, along with a fit to its mean, g(t), whose logarithm
is found to be well described by a quartic polynomial. This figure demonstrates that there is some
scatter around this average, which we quantify further with the distribution of residuals that is
shown in Figure 9. We find that although this distribution is not normal, the central 95% of the
residuals span the interval from −1.02 to 1.3. Since these residuals are natural logarithms, this
range corresponds to the overall factor of 2.8 error (in either direction) on the estimated population
size, as claimed above. The R2 statistic for the linear least-squares fit is 0.923 (to 3 s.f.).

Coefficient c0 c1 c2 c3 c4

Value −0.0127 −2.00× 10−4 2.13× 10−7 2.04× 10−10 2.55× 10−14

Table 6: Coefficients in the polynomial fit c0 + c1t + c2t
2 + c3t

3 + c4t
4 to the function ln(g(t)) in

(7) obtained by least-squares minimisation.
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Figure 9: Distribution of the logarithmic residuals, ln(Nobs/Nfit) where Nobs and Nfit are the
observed and fit population sizes, respectively. Solid line: normal distribution with the same mean
and variance. Dashed lines: extent of the central 95% of the residuals.
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C Geographical composition of languages

We assume that language sizes are linear combinations of the sizes of the geographical regions where
they are spoken, and hence that these fractions remain constant over time. These combinations
are provided in Table 7, with the resulting language sizes in Table 4. For most cases, we assume a
one-to-one relationship between a geographical region (e.g., Sweden) and a language (Swedish). In
other cases, further explanation is necessary:

• English and Welsh — Currently, around 5% of the population of England and Wales resides
in Wales. Assuming this fraction to be constant over history, and that roughly one third of
Welsh residents are speakers of Welsh, we arrive at a 98% to 2% split across England and
Wales into English and Welsh speakers respectively.

• Scandinavian — Two of the languages in the sample, Icelandic and Swedish, descended
from Common Scandinavian with the split estimated to have occurred around 1300CE. We
therefore take the period from 1100CE to 1300CE as common to both languages, and to have
a correspondingly larger population (see below for details of how this was incorporated into
the analysis).

• Irish — Until around 1600CE, we assume the entire population of Ireland is Irish-speaking
before the Irish-speaking population declines. We therefore truncate the time-window for
Irish in the analysis at 1600CE, rather than the present day (see Table 4).

• Latin — Analogously to the Scandinavian languages, we take Latin to be an ancestor of
French and Romanian, estimating the split to take place around 500CE, before which both
daughter languages are considered to have a common history.

• Turkish — The region designated Turkey-in-Asia by McEvedy and Jones [162] includes a
significant population of Kurdish, Armenian and Greek speakers. We take the number of
Turkish speakers to be 75% of this larger population.

• Hebrew — Hebrew was not spoken between around 200CE and 1900CE, being a liturgical and
written language in the intervening period. Here, we assume that the language was frozen
(unable to change) in the period that it was not spoken.

• Aramaic — McEvedy and Jones [162] combine Syria (where Aramaic was spoken) and
Lebanon into a single region. We estimate that Aramaic speakers make up 75% of this
region.

• Ethiopian Semitic — Ge‘ez is assumed to be the direct ancestor of both Tigré and Tigrinya,
with a split occouring at 1000CE. The fraction of Ethiopia in which each daughter language
is spoken is assumed to be constant and equal to 1986 values taken from [163].

• Indo-Aryan — Masica [109, p8] quotes a figure of 640m total speakers of Indo-Aryan lan-
guages. The majority of these reside in the region designated as Pakistan, India and Bangladesh
by McEvedy and Jones [162], for which the most recent estimate of population size (1975CE)
was given as 745m. We therefore assume the population of Indo-Aryan speakers to track
the size of Pakistan, India and Bangladesh, but scaled by a factor of 85% to match recent
estimates in [163]. We take the Indo-Aryan ancestor language to split at around 1000CE; the
daughter languages Bengali, Assamese, Hindi and Gujarati that were included in the sample
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are thereby taken to share a common period of evolution from around 700CE to 1000CE (as
with the Scandinavian and Latin languages). These sizes of each of these daughter languages
were also taken to track the population of Pakistan, India and Bangladesh, again using the
ratio that applies to the present-day populations.

• Tamil — Tamil is spoken in India and Sri Lanka. Proportions of the corresponding regions
documented by McEvedy and Jones [162] were estimated using numbers for 1986CE in [163].

• Tibetan — We take 25% of the population of the Chinese Turkestan and Tibet region [162]
to be Tibetan.

• Mongolian — The Mongolian-speaking population extends beyond the region designated as
Mongolia by McEvedy and Jones which excludes Inner Mongolia. We assume that the total
population of Mongolian speakers is 35% larger than that of Mongolia.

• Mesoamerican languages — These languages are spoken in regions designated as Mexico and
Guatemala by McEvedy and Jones [162]. We take current estimates of their speaker numbers
as fractions of the relevant geographical regions to obtain the weight of the languages, and
a historical estimate to determine the fraction of Mexico population that spoke Classical
Nahuatl before splitting into daughters at around 1600CE. However, given the recent decline
(in particular) of Nahuatl as it was replaced by Spanish in Mexico, this means that the
numbers post-split are likely to be underestimates, and furthermore it may not be reasonable
to assume that the speaker numbers are a constant fraction of the geographical population
over time. However, we do not believe that this uncertainty greatly affects our results.

• Quechua — We consider three varieties of Quechua, all of which are taken to be descendants
of a common Colonial Quechua language spoken widely across Bolivia, Ecuador and Peru
before 1700CE. After this split, we assume that the speakers of the daughter varieties are
constant fractions of Peru and Ecuador set at values that pertain to the 1970s [163].

Language Geographical composition

Akkadian 100% Iraq
Arabic 100% Arabia + 100% Iraq + 100% Palestine Jordan + 100% Syria Lebanon

+ 100% Maghreb + 100% Libya + 100% Egypt
Aramaic 75% Syria Lebanon
Armenian 18% Caucasia
Assamese 3% Pakistan India Bangladesh
Ayacucho Quechua 6.5% Peru
Aymara 25% Bolivia + 10% Peru
Bengali 20% Pakistan India Bangladesh
Bulgarian 100% Bulgaria
Cakchiquel Maya 8% Guatemala
Chinese 100% China
Classical Nahuatl 20% Mexico
Colonial Quechua 50% Bolivia + 100% Ecuador + 50% Peru
Common Scandinavian 100% Denmark + 100% Sweden + 100% Norway
Egyptian 100% Ancient Egypt
English 98% England Wales
French 100% France
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Language Geographical composition

Geez 24% Ethiopia
Georgian 12% Caucasia
German 100% Germany + 100% Austria
Greek 100% Greece
Gujarati 4% Pakistan India Bangladesh
Hebrew 100% Palestine Jordan
Hindi 25% Pakistan India Bangladesh
Huallaga Quechua 0.1% Peru
Huasteca Nahuatl 1.18% Mexico
Icelandic 100% Iceland
Imbabura Quechua 5% Ecuador
Indo Aryan 85% Pakistan India Bangladesh
Irish 100% Ireland
Japanese 100% Japan
Khmer 100% Khmer Republic
Korean 100% Korea
Latin 100% France + 100% Iberia + 100% Italy + 100% Romania
Mapuche 100% Chile
Michoacan Nahuatl 0.003% Mexico
Mongolian 135% Mongolia
North Pueblo Nahuatl 0.1% Mexico
Persian 100% Iran
Quiche Maya 15% Guatemala
Romanian 100% Romania
Russian 100% Russia In Europe
Sumerian 100% Iraq
Swedish 100% Sweden
Tamil 6% Pakistan India Bangladesh + 23% Sri Lanka
Tetelcingo Nahuatl 0.005% Mexico
Tibetan 25% C Turkestan Tibet
Tigre 3% Ethiopia
Tigrinya 21% Ethiopia
Turkish 75% Turkey In Asia
Welsh 2% England Wales
Yucatec Maya 0.83% Mexico

Table 7: Geographical composition of the speech community for each language in the sample. The
resulting relative historical average population sizes are given in Table 4.

In the main text, the model calls for a single size to characterise each population over the relevant
historical period. We use the mean of Ni(t) given by Eq. (6) over the historical time period (or
periods, for Hebrew) given in Table 4, summed over regions i with the weights given in Table 7.
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D Origin-fixation model

As described in the main text, we have constructed an origin-fixation model to describe the dynam-
ics of language change at the population level, and more specifically provide likelihood functions
for the empirical data sets under various assumptions on the underlying linguistic behaviour of
individuals. In this model, an innovation (mutation) of type i + 1 that successfully propagates
through (invades) a population of type i individuals is introduced as a Poisson process with rate
ωi. Recall from the main text that we refer to the introduction of a successful innovation to the
population as an origination event. We take ωi = ω̄/(V fi), where fi is the typological frequency
of variant i = 1, 2, . . . , V across the world’s languages, so that mean time between the onset of
origination events is proportional to fi. In most origin-fixation models [26], the fixation time TF
is idealised as zero. As explained in the main text, in language change the timescale of fixation
(decades to hundreds of years) is not greatly separated from the origination timescale (hundreds
to thousands of years). Consequently, we must generalise to nonzero fixation times. Specifically,
we model the fixation process as one whose time to fixation is drawn from a Gamma distribution
(this because the fixation time is necessarily positive, and we wish to treat its mean and variance
as independent quantities). Since in this framework it is possible that the change to the next stage
of the cycle may be triggered before the previous one has gone to fixation, we must also account
for interference between successive originations.

D.1 Likelihood function

In the main text, we compared different models using the Akaike Information Criterion, defined
through equation (4). This involves the likelihood function

L =

n∏
i=1

Lmi(ti) (8)

where Lmi(ti) gives the probability that exactly mi language changes have occurred in a time
window of length ti these corresponding to language i in the sample. In this section, we explain
how Lmi(ti), and therewith L, is calculated.

We assume that at the beginning of an observation window, t = 0, only one variant is present in
the population. Let ω1 be the origination rate at the first stage in the cycle and TF and σ2

TF
be the

mean and variance of the time for the innovation to reach fixation in the population, conditioned
on this event occurring. Even in those cases where exact results are available [27], the functional
form of the distribution p1(t) that the invading mutant fixes at time t is very complicated. We have
found it is well approximated by the convolution of a Poisson process with rate ω and a Gamma
distribution with mean TF and variance σ2

TF
(see Section E.2.1 below). That is

p1(t) ≈ ω1e−ω1t ∗ (βt)α−1βe−βt

Γ(α)
(9)

where Γ(α) is the Gamma function and ∗ denotes the convolution operation. The parameters α
and β are related to the mean and variance of the fixation time via

TF =
α

β
and σ2

TF
=

α

β2
. (10)
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Once the innovation has gone to fixation, the next innovation can then be introduced to the
population at rate ω2 (which need not equal ω1) and its fixation time is assumed to have the
same mean and variance as the first mutant. The probability Pm(t) that at least m changes have
occurred by time t is obtained by convolving p1(t) with itself m times, and integrating from 0
to t. The probability Lm(t) that exactly m changes have occurred by time t is then given by∫ t

0 [Pm(t′)− Pm+1(t′)] dt′. This is most conveniently written in the form of the Laplace transform

L̂m(s) =
1

s

(
m∏
i=1

wi
wi + s

)(
β

β + s

)mα [
1− wm+1

wm+1 + s

(
β

β + s

)α]
. (11)

Note that in the case m = 0, the product over i is set equal to unity.

It is possible to invert the Laplace transform and obtain explicit expressions for Lm(t) involving
alternating sums of incomplete Gamma functions. Unfortunately, these expressions are difficult
to compute to the desired numerical precision, due to cancellations between terms at the leading
order. A much better approach is to numerically invert (11) using the Euler algorithm as set out
in [164]. This involves computing the sum

L(t) ≈ 1

t

n∑
i=1

ciReL̂m
(
ζi
t

)
(12)

where the number of terms n, the weights ci and the nodes ζi depend on the desired precision [164].
We have found five digits of precision sufficient for our needs, which corresponds to n = 18,
a remarkably small number of function evaluations given the complexity of the problem. The
different cultural evolutionary scenarios that we test in the main text give rise to a wide range of
different parameter combinations. To maintain numerical precision in calculating the logarithm of
the likelihood Lm(t) across the full range of parameter values, a few minor modifications to the
standard Euler algorithm were required:

• For the case m = 0, L0(t)→ 1 as t→ 0. Here, the log likelihood is close to zero, and therefore
for this to be obtained to the desired precision, we invert the transform of 1 − L0(t) (which
is close to zero), and use a library function to evaluate ln(1− x) for small x.

• In all other cases, the likelihood has a leading exponential decay

e−s
∗t where s∗ = min{β, ω1, . . . , ωm}

is the location of the singularity in (11) closest to the origin in the complex-s plane. Since the
combination s∗t can become large (leading to a very small likelihood), we maintain precision
via the identity lnL(t) = −s∗t + lnRs∗(t) where Rs∗(t) is the inverse of the shifted Laplace
transform L̂(s − s∗). Note that the apparent pole at s = 0 is cancelled by a zero in the
numerator, which permits this shift of the integration contour.

• Finally, some of the terms in the sum (12) can take values that are sufficiently small or large
to cause overflow when working to machine precision. We handle this by computing the
logarithm of each term in the sum and subtracting out the largest real part from all terms.
Then the remainders can be safely exponentiated and summed without causing overflow. The
contribution that was subtracted is then reinstated into the result for the log likelihood at
the end of the calculation.

The likelihood of the macroscopic Poisson process with state-dependent origination rates ω1, ω2, . . .
can be obtained from the inversion of (11) after taking the limit β →∞. A complete implementation
of the likelihood analysis code is provided for reference at [62].
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D.2 Interference correction

The calculation of the likelihood function above is conditioned on each origination going to fixation
before the next origination event is triggered. When the origination rate ωi is comparable to 1/TF ,
successive origination events can interfere, which ultimately leads to coexistence of multiple variants
rather than a sequence of changes going through the population. This feature is inconsistent with
the empirical data, in which the typical situation is that one convention dominates, or that we
are in transition from one stage of the cycle to the next. To prevent a maximum of the likelihood
function being found in this region, we need to multiply it by the probability that an originated
innovation does go to fixation: this then gives us the joint probability that fixation will occur, and
that it has occurred by a given time.

We introduce therefore the correction Ci, which is the propbability that the innovation introduced
at stage i (i.e., the one that precipitates a change to stage i+1) goes to fixation without interference.
Then,

L′m(t) =

(
m∏
i=1

Ci

)
Lm(t) . (13)

In the case of the Poisson process (or the Wright-Fisher model with infinite selection) TF ≡ 0, and
so no correction is needed (Ci ≡ 1). In the general Wright-Fisher model, we find from numerical

computations that Ci is well approximated by Ci = e−ωiTF (see Section E.2.1 below). However, the
precise form of the correction is not too important in terms of likelihood maximisation, as long as
Ci ≈ 1 when innovations can propagate freely without interference, and decreases towards 0 when
they cannot.

E Wright-Fisher model

At the individual speaker level, we use a Wright-Fisher model. We provide the full definition of this
model here, explain how we extract from it the parameters α, β and ωi in the origin-fixation model,
and demonstrate numerically that the latter serves as a good approximation to the Wright-Fisher
model after averaging over individual innovation frequencies.

E.1 Definition

The dynamics of the Wright-Fisher model are illustrated in Fig. 1 of the main text. We assume
that at a given point in time, the language is in transition from stage i to i+1 of the cycle. Each of
the N speakers is then characterised by the frequency xn that they use the innovation (i.e., produce
an utterance consistent with stage i+ 1 of the cycle). Each speaker updates their grammar (their
xn value) at intervals of ∆t = 1/R, where R is the interaction rate. They retain a fraction (1−ε) of
their existing grammar, and replace the remaining fraction with a memory of either the innovation
or the existing convention, this depending on the relevant linguistic interactions they have over the
interval ∆t. If we define a variable τn such that τn = 0 when the speaker stores a memory of the
convention, and τn = 1 for the case of the innovation, we have

x′n = (1− ε)xn + ετn . (14)
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The probability pn that τn = 1 depends on the frequency of the innovation in the speaker’s neigh-
bourhood, x̄n, the individual innovation rate η and the selection strength s. The specific prescription
is

pn =
1− x̄n
1 + x̄ns

ηi +
(1 + s)x̄n
1 + x̄ns

. (15)

In words, this equation says that a speaker first samples an instance of linguistic behaviour from
their local neighbourhood, wherein the convention is given weight 1, and the innovation weight
1 + s. That is, if s > 0 the innovation is selected for; and if s < 0 it is selected against. If this
instance of linguistic behaviour corresponds to the convention, there is a probability ηi that it is
recorded by the speaker as the innovation (i.e., a mutation from stage i to i + 1 of the cycle has
occurred at the individual level).

We are deliberately abstract in our specification of the model, as different mechanisms can give
rise to selection and innovation. A number of concrete examples, and their relation to linguistic
theories, are provided in the main text.

E.2 Correspondence with the origin-fixation model

To connect the Wright-Fisher model to the origin-fixation model, we need to work out the values

of the parameters ωi, TF and σ2
TF
≡ T 2

F − TF
2

of the latter that are implied by the former. We
consider first of all the origination rates. Starting from a state with xn = 0 for all speakers, we
see that each agent has a probability ηi of generating an innovation at a rate R. Then the total
rate at which successful innovations propagate is NRηiQ(ε/N), where Q(x0) is the probability that
an innovation with frequency x0 in the population goes to fixation. x0 = ε/N because we assume
the innovation rate is sufficiently small that exactly one speaker starts off with the innovation at
level ε. Within this low innovation-rate regime, the innovation then propagates under the influence
of selection and drift (fluctuations arising from the finite exposure to linguistic behaviour) until it
reaches fixation.

To calculate Q(x0), we first define δxn = x′n − xn and determine the expectation values 〈δxn〉 and
〈(δxn)2〉 over the distribution of τn given above. This allows one to write down the forward or
backward Kolmogorov equation for the set of individual speaker frequencies xn via the Kramers-
Moyal expansion. Various studies, e.g., [45–47], have shown that for an appropriate weighted
average x of these individual speaker frequencies, one has the backward Kolmogorov equation

TM
∂q(t|x)

∂t
= sx(1− x)

∂q(t|x)

∂x
+

1

2Ne
x(1− x)

∂2q(t|x)

∂x2
(16)

for the probability distribution q(t|x) that an innovation with initial frequency x reaches fixation
at time t. In this equation, s is as defined in the Wright-Fisher model, TM = 1/(Rε) is the memory
lifetime identified in the main text, and Ne is an effective population size

Ne =
N

ε

z2

z2
. (17)

The quantity zn is defined as the number of others speakers that speaker n can observe the linguistic
behaviour of; we assume that each of these speakers is given the same amount of attention, although
the number of neighbours zn can vary across a social network. (Derivations of this result can be
found in [45–47]).
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This Kolmogorov equation is extremely well studied in the population genetics literature (e.g. [27,
36]). In particular, the procedure for obtaining moments of the time to reach fixation from a single
mutant (x → 0), conditioned on fixation occurring, is well established [36]. To compute TF and
σ2
TF

, we require the first two moments. Defining

Fk(x) =

∫ ∞
0

tkq(t|x) dt , (18)

we have

Q(x) = F0(x) , TF = lim
x→0

F1(x)

F0(x)
and T 2

F = lim
x→0

F2(x)

F0(x)
(19)

where Q(x) is the probability that a mutant with initial frequency x fixes. By multiplying (16) by
tk and integrating [36], we find the recursion

2Nesx(1− x)F ′k(x) + x(1− x)F ′′k (x) = −2kNeTMFk−1(x) (20)

where a prime denotes differentiation. The boundary conditions of this differential equation are
Fk(0) = 0 for all k, F0(1) = 1 and Fk(1) = 0 for k > 0. For the case k = 0, the solution has the
closed form [36]

Q(x) = F0(x) =
1− e−2Nesx

1− e−2Nes
. (21)

Substituting x = ε
N we arrive at Eq. (3) in the main text. Although no general closed-form

expression exists for the case k > 0, (20) can still be integrated to obtain [36]

Fk(x) = 2kNeTM

[
(1−Q(x))

∫ x

0

Fk−1(y)

y(1− y)

Q(y)

Q′(y)
dy +Q(x)

∫ 1

p

Fk−1(y)

y(1− y)

1−Q(y)

Q′(y)
dy

]
(22)

which can be evaluated numerically and substituted into (19) to obtain the desired moments.

The complexity of this numerical problem is simplified slightly by noting that

T kF = lim
x→0

Fk(x)

F0(x)
= 2kNeTM

∫ 1

0

Fk−1(y)

y(1− y)

1−Q(y)

Q′(y)
dy =

kTM
s

∫ 1

0

Fk−1(y)

y(1− y)

[
1− e−2Nes(1−y)

]
dy

(23)

and the fact that T kF is symmetric in s → −s. However, we find that a numerical integration
routine, implemented näıvely, becomes unreliable for small and large Ne|s|. In these regimes it
both more efficient and less susceptible to numerical instability to use Taylor series and asymptotic
expansions, respectively. Specifically, for small |s| we use the approximations

TF ≈ 2NeTM

[
1− (2Nes)

2

72

]
when 2Ne|s| < 10−3 (24)

T 2
F ≈ 8N2

e T
2
M

[
π2

3
− 2 +

(
π2

36
− 17

54

)
(2Nes)

2

]
when 2Ne|s| < 10−2 (25)

and for large |s|

TF ∼
2TM
|s|

[
ln(2Ne|s|) + γ − 1

2Ne|s|

]
when 2Ne|s| > 500 (26)

T 2
F ∼

2T 2
M

s2

[
4(ln(2Ne|s|) + γ)2 +

π2

3

]
when 2Ne|s| > 500 (27)

in which γ is the Euler-Mascheroni constant γ = 0.577 . . ..
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E.2.1 Numerical test of the correspondence between the models

In arriving at the Kolmogorov equation (16), we made a number of approximations, in particular,
that innovation (mutation) can be ignored when estimating the time to fixation. We therefore
compare numerical solutions for the probability P (t) that an innovation has reached fixation by time
t within the full Wright-Fisher dynamics against the formulæ we have derived for the corresponding
origin-fixation model. These results are shown in Fig. 10, and we find the essential features are
well captured. Of particular importance are deviations from Poisson behavior that are evident
at early times. These deviations arise from the fact that an innovation takes a finite amount of
time to propagate through the whole population, and are absent in classical origin-fixation models
where TF is assumed to be zero. We see that even in a population of 100 speakers, the probability
that a single change has occurred is suppressed for a historically relevant time (∼100 generations,
which would equate to 2, 500 years in a child-based model). It is this property that is ultimately
responsible for the very low likelihoods that are encountered in the main text.

These numerics also allow us to estimate the form of the interference correction Ci introduced in
Section D.2. To achieve this, we consider a generalisation to the Wright-Fisher model where two
innovations can occur. If the innovation rate is fast enough, the second innovation can occur before
the first has gone to fixation. A plot of the probability that the first goes to fixation for a variety of
innovation rates gives us the correction factor Ci. We find that the numerical data are reasonably
well fit by the function Cie

−ωiTF . As noted previously, it is not important to capture the exact form
of this function, as the regime where successive innovations interfere is not empirically relevant.
What is important is establishing where the correction becomes significant.

E.3 Robustness of the Wright-Fisher model

It is well established in the population genetics literature (e.g. [37]) that the Wright-Fisher model
approximates well the behaviour of a large number of evolutionary processes. In the main text, we
presented one specific member from this class, since this allowed us to ascribe concrete meanings
to the parameters Ne, s and TM in terms of individual linguistic behaviour. Here, we demonstrate
that many aspects of that specific model—for example, that all individuals have the same memory
lifetime and that this remains constant over time, that they are equally biased in favour (or against)
an innovation or do not themselves undergo processes of birth and death—are incidental. The key
property is that linguistic behaviour is socially learnt, i.e., acquired from other members of the
speech community, perhaps in the presence of biases.

This demonstration model comprises the following components:

• Agent lifetime — After being introduced into the population, an agent has a lifetime d drawn
from a Gamma distribution with mean µd and variance σ2

d. It is then removed from the
population after time d has elapsed. If this removal causes the entire population to go extinct,
a new population comprising a single individual is immediately established. (The probability
of this event is very small once a steady state is reached, and is included simply to guarantee
that every run of the simulation reaches the steady state).

• Agent reproduction — When an agent is introduced into the population, it is also assigned a
number of offspring k ≥ 0 drawn from a Geometric distribution with mean µk. Associated
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Figure 10: Comparison of the origin-fixation model with numerical solutions of the full Wright-
Fisher model. (Top left) Probability that a single change has occurred, N = 100, η = 10−3, s = 0.
The dotted line is a Poisson process with the same mean. (Top right) Probability that the first of
a sequence of two changes has occurred, N = 200, η = 5 × 10−4, s = 10−3. Interference between
the first and second innovation means that first change does not always go to fixation. (Bottom
left) Probability that the second in a sequence of two changes have occurred, N = 100, η = 10−3,
s = 10−2. (Bottom right) Probability that the first of two changes goes to fixation as a function of
the interference I = ωTF . This is reasonably well fit by the exponential P (∞) = e−I .
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with each offspring n = 1, 2, . . . , k is the age bn of the parent when the offspring is born.
This age is drawn from a Gamma distribution with mean µb and variance σ2

b . (If this age
exceeds d, the parent’s age of death, then it is discarded and the distribution resampled).
When the time of birth arrives, a new agent is entered into the population with probability 1
if the current population size N is smaller than a carrying capacity K, and with probability
1 − K

Nµk
otherwise. This rule prevents an unbounded exponential growth of the population,

and in practice causes its size N to fluctuate around K in the steady state.

• Initial interaction network — When an agent is born, its parent is marked as an interlocutor
(that is, someone who may influence its linguistic behaviour). The offspring also inherits each
of its parent’s z interlocutors with probability µi

z . The offspring inherits all interlocutors if
µi > z; otherwise it inherits µi of its parent’s interlocutors on average.

• Expansion of the interaction network — At the time of birth, an agent is also assigned an
age e drawn from a Gamma distributions with mean µe and variance σ2

e . At this age, each
member of the population, n, is assigned a weight wn = w0 if they are one of the agent’s
existing interlocutors, or wn = exp(−h|δ|) where δ is the age difference between the two
agents. The existing interlocutors are then discarded, and a new set built up, with agent n
being marked as an interlocutor with probability µ′iwn/Z (capped at 1) where Z =

∑
nwn.

Here µ′i is the mean number of interlocutors arising from the expansion of the interaction
network. If the homophily parameter h = 0, then every agent in the population has the same
chance of becoming an interlocutor at the time of expansion; for h > 0, agents who are closer
in age are more likely to interact after expansion than those further away in age. Thus, in this
model, young agents tend to be influenced by their parents (and their parent’s peer group)
whereas older agents tend to influenced by their own peer group.

• Initial linguistic behaviour — When an agent is created, the frequency x with which it uses
the innovation is inherited unchanged from its parent.

• Rate of linguistic interactions — An agent participates in a linguistic interaction that mod-
ifies its behaviour at age a according to a time-inhomogeneous Poisson process of intensity
R(a)da = R∞ + (R0 − R∞)e−a/θ. That is, when the agent is born, the rate of (behaviour-
modifying) interactions is R0, and this decays exponentially to R∞ < R0 with characteristic
timescale θ. Thus, in this model, an agent may become less liable to change their behaviour
as they age. Each of the parameters R0, R∞ and θ are assigned from distributions when
the agent is born. R0 is drawn from a Gamma distribution with mean µR and variance σ2

R.
R∞ = R0/(1 + r) where r is drawn from a Gamma distribution with mean µr and variance
σ2
r . The decay time θ is drawn from a Gamma distribution with mean µθ and variance σ2

θ .

• Behaviour modification in a linguistic interaction — When a linguistic interaction takes place,
each of the agent’s interlocutors is included in the interaction with probability q, subject to
a constraint that at least one interlocutor must be present. The mean frequency of the
innovation among this subset of interlocutors, y, is calculated. The agent then updates their
innovation frequency x as described in the main text: a fraction ε of their existing frequency
is replaced with τ = 1 if they perceive the innovation in the interaction, and with τ = 0 if
they perceive the convention. The probability that τ = 1 is (1+χ)y

1+χy where χ is a bias towards
(or against) the innovation. Both the parameters ε and χ are randomly assigned to an agent
at birth. ε is drawn from a Beta distribution on [0, 1] with mean µε and variance σ2

ε . The
bias χ is drawn from a normal distribution with mean µχ and variance σ2

χ.
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It is evident that this model is much more complex than that described in the main text: agents
are born and die, and the population size fluctuates over time; there is vertical and horizontal
transmission of linguistic behaviour, the proportion of which changes during an agent’s lifespan;
agents can be more or less liable to changing their behaviour, and the rate at which they do
so decreases over time; and they can be more less disposed to the innovation. It also has a
correspondingly increased number of parameters: 23 in total; by contrast the Wright-Fisher model
described in the main text has only 5 (if one excludes, as here, the possibility of an innovation
being generated during the process of fixation).

To establish that the demonstration falls into the general class of Wright-Fisher models—and can
be well represented with a smaller number of parameters—we use the fact that over short time
increments ∆t, we should find that the first two moments in the change in the frequency of the
innovation over the population, ∆x, are

∆x =
∆t

TM
sx(1− x) and ∆x2 =

∆t

TM

1

Ne
x(1− x) , (28)

where x is the innovation frequency, and the parameters TM , s and Ne are as described in the
main text. Here, the overlines denote averages over multiple time intervals. The crucial point is
that correspondence with the Wright-Fisher model is manifested as both moments varying with
frequency as x(1− x).

In Figure 11 we plot these moments obtained from simulations as a function of x under three choices
of the parameters controlling the bias χ: (i) µχ = 0, σχ = 0.005; (ii) µχ = 0.005, σχ = 0; and (iii)
µχ = 0.005, σχ = 0.005. That is, in case (i) agents are equally likely to be biased in favour of,
or against the innovation; in case (ii) all agents are biased by the same amount in favour of the
innovation; and in case (iii) agents are more likely to be biased in favour of, rather than against,
the innovation. The values of the remaining 21 parameters are given in Table 8 (and were chosen to
be in the range that could plausibly describe a small human-like population). Fits of the parabola
Ax(1− x), with the amplitude A as a free parameter, are shown as dashed lines if Figure 11. We
find these empirical fits describe well the jump moments obtained from simulation (albeit subject
to some noise in the estimation of the first jump moment, which is likely a consequence of the wide
variation in individual behaviour this demonstration model permits).

Parameter Meaning Value

K Carrying capacity 1000
µk Mean number of offspring 2.0
µb Mean age of parent at offspring birth 30.0yr
σb Standard deviation in parent age at offspring birth 8.0yr
µe Mean age at interaction network expansion 18.0yr
σe Standard deviation in age at interaction network expansion 4.0yr
µd Mean age at death 60.0yr
σd Standard deviation in age at death 12.0yr
µi Mean number of parent interlocutors inherited 3.0
µ′i Mean number of interlocutors following expansion 10.0
h Age homophily at network expansion 0.2
w0 Inherited interlocutor weight at expansion 1.0
µR Mean interaction rate at birth 1.0yr−1

σR Standard deviation in interaction rate at birth 0.1yr−1

µr Mean interaction rate decrease with age 10.0
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Parameter Meaning Value

σr Standard deviation in interaction rate decrease with age 10.0
µθ Mean time over which interaction rate decays 20.0yr
σθ Standard deviation in time over which interaction rate decays 10.0y
q Probability each interlocutor participates in an interaction 0.5
µε Mean fraction of innovation frequency that is replaced 0.15
σε Standard deviation in fraction of innovation frequency that is replaced 0.15

Table 8: Parameter values in the demonstration agent-based model

Moreover, we can form naive estimates of the parameters TM , χ and Ne by averaging over the
distributions set out above. For example, we can calculate the mean interaction rate R by averaging
over the distributions of speaker lifetimes and the parameters R0, R∞ and θ that govern how an
individual’s interaction rate changes over time. We estimate

TM =
1

Rε
, s = χ and Ne = N

ε

ε2
. (29)

The resulting parabolas are plotted as solid lines of Figure 11. We find that the amplitude of the
second jump moment (which characterises the stochastic contribution to the dynamics) is well-
described by this estimate, whilst that of first jump moment is of the right order of magnitude
but is over-estimated. This demonstrates that the additional complexity of this model does not
fundamentally change its behaviour, but instead leads to values of the parameters in the Wright-
Fisher (and therewith, the origin-fixation) model that deviate slightly from estimates obtained by
simple averaging.

This observation has two important consequences for our analysis. First, by surveying all com-
binations of the parameters TM , s and Ne, we ultimately account for any model which—like the
demonstration model here—falls into the large Wright-Fisher class. Second, in addition to the
Wright-Fisher model providing a robust description of many different evolutionary processes, the
interpretation of quantities like memory lifetime and individual biases given in the main text also
generalises beyond the specific individual-based model presented there.
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