576 research outputs found

    Dilepton Production at SPS-energy Heavy Ion Collisions

    Get PDF
    The production of dileptons is studied within a hadronic transport model. We investigate the sensitivity of the dilepton spectra to the initial configuration of the hadronic phase in a ultrarelativistic heavy ion collision. Possible in medium correction due to the modifications of pions and the pion form factor in a hadronic gas are discussed.Comment: Dedicated to Gerry Brown in honor of the 32nd celebration of his 39th birthday. 31 pages Latex including 13 eps-figures, uses psfig.sty and epsf.st

    Antikaons and hyperons in nuclear matter with saturation

    Full text link
    We evaluate the antikaon and hyperon spectral functions in a self-consistent and covariant many-body approach. The computation is based on coupled-channel dynamics derived from the chiral SU(3) Lagrangian. A novel subtraction scheme is developed that avoids kinematical singularities and medium-induced power divergencies all together. Scalar and vector mean fields are used to model nuclear binding and saturation. The effect of the latter is striking for the antikaon spectral function that becomes significantly more narrow at small momenta. Attractive mass shifts of about 30 and 40 MeV are predicted for the Lambda(1405) and Sigma(1385) resonances. Once scalar and vector mean fields for the nucleon are switched on the Lambda(1520) resonances dissolves almost completely in nuclear matter. All together only moderate attraction is predicted for the nuclear antikaon systems at saturation density. However, at larger densities we predict a sizable population of soft antikaon modes that arise from the coupling of the antikaon to a highly collective Lambda(1115) nucleon-hole state. This may lead to the formation of exotic nuclear systems with strangeness and antikaon condensation in compact stars at moderate densities.Comment: 49 pages, 13 figures, The revised manuscript contains additional material at twice nuclear saturation density. An unexpected and novel mechanism is unravelled that may have dramatic implications on the formation of exotic nuclear systems with strangeness and antikaon condensation in compact star

    Self consistent and covariant propagation of pions, nucleon and isobar resonances in cold nuclear matter

    Full text link
    We evaluate the in-medium spectral functions for pions, nucleon and isobar resonances in a self consistent and covariant manner. The calculations are based on a recently developed formulation which leads to predictions in terms of the pion-nucleon scattering phase shifts and a set of Migdal parameters describing important short range correlation effects. We do not observe significant softening of pion modes if we insist on reasonable isobar resonance properties but predict a considerable broadening of the N(1440) and N(1520) resonances in nuclear matter. Contrasted results are obtained for the s-wave N(1535) and N(1650) resonances which are affected by a nuclear environment very little. The properties of slowly moving isobar's in nuclear matter are found to depend very sensitively on a soft form factor in the piNN vertex, which is not controlled by the piN scattering data.Comment: 20 pages, 7 figure, revised manuscrip

    Onset of magnetism in B2 transition metals aluminides

    Full text link
    Ab initio calculation results for the electronic structure of disordered bcc Fe(x)Al(1-x) (0.4<x<0.75), Co(x)Al(1-x) and Ni(x)Al(1-x) (x=0.4; 0.5; 0.6) alloys near the 1:1 stoichiometry, as well as of the ordered B2 (FeAl, CoAl, NiAl) phases with point defects are presented. The calculations were performed using the coherent potential approximation within the Korringa-Kohn-Rostoker method (KKR-CPA) for the disordered case and the tight-binding linear muffin-tin orbital (TB-LMTO) method for the intermetallic compounds. We studied in particular the onset of magnetism in Fe-Al and Co-Al systems as a function of the defect structure. We found the appearance of large local magnetic moments associated with the transition metal (TM) antisite defect in FeAl and CoAl compounds, in agreement with the experimental findings. Moreover, we found that any vacancies on both sublattices enhance the magnetic moments via reducing the charge transfer to a TM atom. Disordered Fe-Al alloys are ferromagnetically ordered for the whole range of composition studied, whereas Co-Al becomes magnetic only for Co concentration >0.5.Comment: 11 pages with 9 embedded postscript figures, to be published in Phys.Rev.

    The influence of gene expression time delays on Gierer-Meinhardt pattern formation systems

    Get PDF
    There are numerous examples of morphogen gradients controlling long range signalling in developmental and cellular systems. The prospect of two such interacting morphogens instigating long range self-organisation in biological systems via a Turing bifurcation has been explored, postulated, or implicated in the context of numerous developmental processes. However, modelling investigations of cellular systems typically neglect the influence of gene expression on such dynamics, even though transcription and translation are observed to be important in morphogenetic systems. In particular, the influence of gene expression on a large class of Turing bifurcation models, namely those with pure kinetics such as the Gierer–Meinhardt system, is unexplored. Our investigations demonstrate that the behaviour of the Gierer–Meinhardt model profoundly changes on the inclusion of gene expression dynamics and is sensitive to the sub-cellular details of gene expression. Features such as concentration blow up, morphogen oscillations and radical sensitivities to the duration of gene expression are observed and, at best, severely restrict the possible parameter spaces for feasible biological behaviour. These results also indicate that the behaviour of Turing pattern formation systems on the inclusion of gene expression time delays may provide a means of distinguishing between possible forms of interaction kinetics. Finally, this study also emphasises that sub-cellular and gene expression dynamics should not be simply neglected in models of long range biological pattern formation via morphogens

    Weak Localization Effect in Superconductors by Radiation Damage

    Get PDF
    Large reductions of the superconducting transition temperature TcT_{c} and the accompanying loss of the thermal electrical resistivity (electron-phonon interaction) due to radiation damage have been observed for several A15 compounds, Chevrel phase and Ternary superconductors, and NbSe2\rm{NbSe_{2}} in the high fluence regime. We examine these behaviors based on the recent theory of weak localization effect in superconductors. We find a good fitting to the experimental data. In particular, weak localization correction to the phonon-mediated interaction is derived from the density correlation function. It is shown that weak localization has a strong influence on both the phonon-mediated interaction and the electron-phonon interaction, which leads to the universal correlation of TcT_{c} and resistance ratio.Comment: 16 pages plus 3 figures, revtex, 76 references, For more information, Plesse see http://www.fen.bilkent.edu.tr/~yjki

    Fibroblastic niches prime T cell alloimmunity through Delta-like Notch ligands.

    Get PDF
    Alloimmune T cell responses induce graft-versus-host disease (GVHD), a serious complication of allogeneic bone marrow transplantation (allo-BMT). Although Notch signaling mediated by Delta-like 1/4 (DLL1/4) Notch ligands has emerged as a major regulator of GVHD pathogenesis, little is known about the timing of essential Notch signals and the cellular source of Notch ligands after allo-BMT. Here, we have shown that critical DLL1/4-mediated Notch signals are delivered to donor T cells during a short 48-hour window after transplantation in a mouse allo-BMT model. Stromal, but not hematopoietic, cells were the essential source of Notch ligands during in vivo priming of alloreactive T cells. GVHD could be prevented by selective inactivation of Dll1 and Dll4 in subsets of fibroblastic stromal cells that were derived from chemokine Ccl19-expressing host cells, including fibroblastic reticular cells and follicular dendritic cells. However, neither T cell recruitment into secondary lymphoid organs nor initial T cell activation was affected by Dll1/4 loss. Thus, we have uncovered a pathogenic function for fibroblastic stromal cells in alloimmune reactivity that can be dissociated from their homeostatic functions. Our results reveal what we believe to be a previously unrecognized Notch-mediated immunopathogenic role for stromal cell niches in secondary lymphoid organs after allo-BMT and define a framework of early cellular and molecular interactions that regulate T cell alloimmunity
    corecore