96 research outputs found
Sexual conflict maintains variation at an insecticide resistance locus
Background: The maintenance of genetic variation through sexually antagonistic selection is controversial, partly because specific sexually-antagonistic alleles have not been identified. The Drosophila DDT resistance allele (DDT-R) is an exception. This allele increases female fitness, but simultaneously decreases male fitness, and it has been suggested that this sexual antagonism could explain why polymorphism was maintained at the locus prior to DDT use. We tested this possibility using a genetic model and then used evolving fly populations to test model predictions. Results: Theory predicted that sexual antagonism is able to maintain genetic variation at this locus, hence explaining why DDT-R did not fix prior to DDT use despite increasing female fitness, and experimentally evolving fly populations verified theoretical predictions. Conclusions: This demonstrates that sexually antagonistic selection can maintain genetic variation and explains the DDT-R frequencies observed in nature
Sequencing of Pooled DNA Samples (Pool-Seq) Uncovers Complex Dynamics of Transposable Element Insertions in Drosophila melanogaster
Transposable elements (TEs) are mobile genetic elements that parasitize genomes by semi-autonomously increasing their own copy number within the host genome. While TEs are important for genome evolution, appropriate methods for performing unbiased genome-wide surveys of TE variation in natural populations have been lacking. Here, we describe a novel and cost-effective approach for estimating population frequencies of TE insertions using paired-end Illumina reads from a pooled population sample. Importantly, the method treats insertions present in and absent from the reference genome identically, allowing unbiased TE population frequency estimates. We apply this method to data from a natural Drosophila melanogaster population from Portugal. Consistent with previous reports, we show that low recombining genomic regions harbor more TE insertions and maintain insertions at higher frequencies than do high recombining regions. We conservatively estimate that there are almost twice as many “novel” TE insertion sites as sites known from the reference sequence in our population sample (6,824 novel versus 3,639 reference sites, with on average a 31-fold coverage per insertion site). Different families of transposable elements show large differences in their insertion densities and population frequencies. Our analyses suggest that the history of TE activity significantly contributes to this pattern, with recently active families segregating at lower frequencies than those active in the more distant past. Finally, using our high-resolution TE abundance measurements, we identified 13 candidate positively selected TE insertions based on their high population frequencies and on low Tajima's D values in their neighborhoods
Coevolution between a Family of Parasite Virulence Effectors and a Class of LINE-1 Retrotransposons
Parasites are able to evolve rapidly and overcome host defense mechanisms, but the molecular basis of this adaptation is poorly understood. Powdery mildew fungi (Erysiphales, Ascomycota) are obligate biotrophic parasites infecting nearly 10,000 plant genera. They obtain their nutrients from host plants through specialized feeding structures known as haustoria. We previously identified the AVRk1 powdery mildew-specific gene family encoding effectors that contribute to the successful establishment of haustoria. Here, we report the extensive proliferation of the AVRk1 gene family throughout the genome of B. graminis, with sequences diverging in formae speciales adapted to infect different hosts. Also, importantly, we have discovered that the effectors have coevolved with a particular family of LINE-1 retrotransposons, named TE1a. The coevolution of these two entities indicates a mutual benefit to the association, which could ultimately contribute to parasite adaptation and success. We propose that the association would benefit 1) the powdery mildew fungus, by providing a mechanism for amplifying and diversifying effectors and 2) the associated retrotransposons, by providing a basis for their maintenance through selection in the fungal genome
Novel transposable elements from Anopheles gambiae
<p>Abstract</p> <p>Background</p> <p>Transposable elements (TEs) are DNA sequences, present in the genome of most eukaryotic organisms that hold the key characteristic of being able to mobilize and increase their copy number within chromosomes. These elements are important for eukaryotic genome structure and evolution and lately have been considered as potential drivers for introducing transgenes into pathogen-transmitting insects as a means to control vector-borne diseases. The aim of this work was to catalog the diversity and abundance of TEs within the <it>Anopheles gambiae </it>genome using the PILER tool and to consolidate a database in the form of a hyperlinked spreadsheet containing detailed and readily available information about the TEs present in the genome of <it>An. gambiae</it>.</p> <p>Results</p> <p>Here we present the spreadsheet named AnoTExcel that constitutes a database with detailed information on most of the repetitive elements present in the genome of the mosquito. Despite previous work on this topic, our approach permitted the identification and characterization both of previously described and novel TEs that are further described in detailed.</p> <p>Conclusions</p> <p>Identification and characterization of TEs in a given genome is important as a way to understand the diversity and evolution of the whole set of TEs present in a given species. This work contributes to a better understanding of the landscape of TEs present in the mosquito genome. It also presents a novel platform for the identification, analysis, and characterization of TEs on sequenced genomes.</p
In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae
The differential accumulation and elimination of repetitive DNA are key drivers of genome size variation in flowering plants, yet there have been few studies which have analysed how different types of repeats in related species contribute to genome size evolution within a phylogenetic context. This question is addressed here by conducting large-scale comparative analysis of repeats in 23 species from four genera of the monophyletic legume tribe Fabeae, representing a 7.6-fold variation in genome size. Phylogenetic analysis and genome size reconstruction revealed that this diversity arose from genome size expansions and contractions in different lineages during the evolution of Fabeae. Employing a combination of low-pass genome sequencing with novel bioinformatic approaches resulted in identification and quantification of repeats making up 55-83% of the investigated genomes. In turn, this enabled an analysis of how each major repeat type contributed to the genome size variation encountered. Differential accumulation of repetitive DNA was found to account for 85% of the genome size differences between the species, and most (57%) of this variation was found to be driven by a single lineage of Ty3/gypsy LTR-retrotransposons, the Ogre elements. Although the amounts of several other lineages of LTR-retrotransposons and the total amount of satellite DNA were also positively correlated with genome size, their contributions to genome size variation were much smaller (up to 6%). Repeat analysis within a phylogenetic framework also revealed profound differences in the extent of sequence conservation between different repeat types across Fabeae. In addition to these findings, the study has provided a proof of concept for the approach combining recent developments in sequencing and bioinformatics to perform comparative analyses of repetitive DNAs in a large number of non-model species without the need to assemble their genomes
Molecular gated nanoporous anodic alumina for the detection of cocaine
[EN] We present herein the use of nanoporous anodic alumina (NAA) as a suitable support to implement
molecular gates for sensing applications. In our design, a NAA support is loaded with a fluorescent
reporter (rhodamine B) and functionalized with a short single-stranded DNA. Then pores are blocked
by the subsequent hybridisation of a specific cocaine aptamer. The response of the gated material
was studied in aqueous solution. In a typical experiment, the support was immersed in hybridisation
buffer solution in the absence or presence of cocaine. At certain times, the release of rhodamine B from
pore voids was measured by fluorescence spectroscopy. The capped NAA support showed poor cargo
delivery, but presence of cocaine in the solution selectively induced rhodamine B release. By this simple
procedure a limit of detection as low as 5 × 10−7 M was calculated for cocaine. The gated NAA was
successfully applied to detect cocaine in saliva samples and the possible re-use of the nanostructures
was assessed. Based on these results, we believe that NAA could be a suitable support to prepare
optical gated probes with a synergic combination of the favourable features of selected gated sensing
systems and NAA.We thank Projects MAT2015-64139-C4-1-R and TEC2015-71324-R (MINECO/FEDER), the Catalan Government (Project 2014 SGR 1344), the ICREA (ICREA2014 Academia Award) and the Generalitat Valenciana (Project PROMETEOII/2014/047) for support. We also thank to the Agencia Espanola del Medicamento y Productos Sanitarios for its concessions. A.R. thanks the UPV for her predoctoral fellowship. The authors also thank the Electron Microscopy Service at UPV for support.Ribes, À.; Xifre Perez, E.; Aznar, E.; Sancenón Galarza, F.; Pardo Vicente, MT.; Marsal, LF.; Martínez-Máñez, R. (2016). Molecular gated nanoporous anodic alumina for the detection of cocaine. Scientific Reports. 6. https://doi.org/10.1038/srep38649S386496Nadrah, P., Planinšek, O. & Gaberšček, M. Stimulus-responsive Mesoporous Silica Particles. J. Mater. Sci. 49, 481–495 (2014).Baeza, A., Colilla, M. & Vallet-Regí, M. Advances in Mesoporous Silica Nanoparticles for Targeted Stimuli-Responsive Drug Delivery. Expert Opin. Drug Deliv. 12, 319–337 (2015).Karimi, M., Mirshekari, H., Aliakbari, M., Zangabad, P. S. & Hamblin, M. R. Smart Mesoporous Silica Nanoparticles for Controlled-Release Drug Delivery. Nanotech. Rev. 5, 195–207 (2016).Aznar, E. et al. Gated Materials for On-Command Release of Guest Molecules. Chem. Rev. 116, 561−718 (2016).Sancenón, F., Pascual, Ll., Oroval, M., Aznar, E. & Martínez-Máñez, R. Gated Silica Mesoporous Materials in Sensing Applications. Chemistry Open. 4, 418–437 (2015).Lu, C.-H., Willner, B. & Willner, I. DNA nanotechnology: From sensing and DNA machines to drug-delivery systems. ACSNano 7, 8320–8332 (2013).Klajn, R., Stoddart, J. F. & Grzybowski, B. A. Nanoparticles Functionalized With Reversible Molecular And Supramolecular Switches. Chem. Soc. Rev. 39, 2203–2237 (2010).Wei, R., Martin, T. G., Rant, U. & Dietz, H. DNA Origami Gatekeepers for Solid-State Nanopores. Angew. Chem. Int. Ed. 51, 4864 4867 (2012).Zhu, C. L., Lu, C. H., Song, X. Y., Yang, H. H. & Wang, X. R. Bioresponsive Controlled Release Using Mesoporous Silica Nanoparticles Capped with Aptamer-Based Molecular Gate. J. Am. Chem. Soc. 133, 1278–1281 (2011).Özalp, V. C., Pinto, A., Nikulina, E., Chulivin, A. & Schäfer, T. In Situ Monitoring of DNA-Aptavalve Gating Function on Mesoporous Silica Nanoparticles. Part. Part. Sys. Charact. 31, 161–167 (2014).Choi, Y. L., Jaworski, J., Seo, M. L., Lee, S. J. & Jung, J. H. Controlled release using mesoporous silica nanoparticles functionalized with 18-crown-6 derivative. J. Mater. Chem. 21, 7882–7885 (2011).Zhang, Z., Wang, F., Balogh, D. & Willner, I. pH-controlled release of substrates from mesoporous SiO2 nanoparticles gated by metal ion-dependent DNAzymes. J. Mater. Chem. B. 2, 4449–4455 (2014).Fu, L. et al. Portable and Quantitative Monitoring of Heavy Metal Ions Using Dnazyme-Capped Mesoporous Silica Nanoparticles with a Glucometer Readout. J. Mater. Chem. B. 1, 6123–6128 (2013).Díez, P. et al. Toward the Design of Smart Delivery Systems Controlled by Integrated Enzyme-Based Biocomputing Ensembles. J. Am. Chem. Soc. 136, 9116–9123 (2014).Tang, D. et al. Low-Cost and Highly Sensitive lmmunosensing Platform for Aflatoxins Using One-Step Competitive Displacement Reaction Mode and Portable Glucometer-Based Detection. Anal. Chem. 86, 11451–11458 (2014).Hou, L., Zhu, C., Wu, X., Chen, G. & Tang, D. Bioresponsive Controlled Release from Mesoporous Silica Nanocontainers with Glucometer Readout. Chem. Commun. 50, 1441–1443 (2014).Chen, Z. et al. Stimulus-response mesoporous silica nanoparticle-based chemiluminescence biosensor for cocaine determination. Biosens. Bioelectro. 75, 8–14 (2016).Pascual, L. L. et al. Oligonucleotide-Capped Mesoporous Silica Nanoparticles as DNA-Responsive Dye Delivery Systems for Genomic DNA Detection. Chem. Commun. 51, 1414–1416 (2015).Qian, R., Ding, I. & Ju, H. Switchable Fluorescent Imaging of Intracellular Telomerase Activity Using Telomerase-Responsive Mesoporous Silica Nanoparticle. J. Am. Chem. Soc. 135, 13282–13285 (2013).Ren, K., Wu, J., Zhang, Y., Yan, F. & Ju, H. Proximity Hybridization Regulated DNA Biogate for Sensitive Electrochemical Immunoassay. Anal. Chem. 86, 7494–7499 (2014).Chen, Y., Santos, A., Wang, Y., Wang, C. & Losic, D. Biomimetic Nanoporous Anodic Alumina Distributed Bragg Reflectors in the Form of Films and Microsized Particles for Sensing Applications. ACS Appl Mater Interfaces. 7, 19816–19824 (2015).Aw, M. S., Bariana, M. & Losic, D. In Nanoporous Alumina. Fabrication, Structure, Properties and Applications (ed. Losic, D., Santos, A. ) 319–354 (Springer International Publishing, 2015).Urteaga, R. & Berli, C. L. In Nanoporous Alumina. Fabrication, Structure, Properties and Applications (ed. Losic, D., Santos, A. ) 249–269 (Springer International Publishing, 2015).Vojkuvka, L., Marsal, L. F., Ferré-Borrull, J., Formentin, P. & Pallarés, J. Self-Ordered Porous Alumina Membranes with Large Lattice Constant Fabricated by Hard Anodization. Superlattices Microstruct. 44, 577–582 (2008).De la Escosura-Muñiz, A. & Merkoçi, A. Nanochannels Preparation and Application in Biosensing. ACS Nano. 6, 7556–7583 (2012).Kumeria, T. et al. Nanoporous Anodic Alumina Rugate Filters for Sensing of Ionic Mercury: Toward Environmental Point-of-Analysis Systems. ACS Appl. Mater. Interfaces. 6, 12971−12978 (2014).Santos, A., Kumeria, T. & Losic, D. Nanoporous Anodic Alumina: A Versatile Platform for Optical Biosensors. Materials. 7, 4297–4320 (2014).Ferré-Borrull, J., Pallarès, J., Macías, G. & Marsal, L. F. Nanostructural Engineering of Nanoporous Anodic Alumina for Biosensing Applications. Materials. 7, 5225–5253 (2014).Gong, D., Yadavalli, V., Paulose, M., Pishko, M. & Grimes, C. A. Controlled Molecular Release Using Nanoporous Alumina Capsules. Biomed Microdevices. 5, 75–80 (2003).Alvarez, S. D., Li, C.-P., Chiang, C. E., Schuller, I. K. & Sailor, M. J. A Label-Free Porous Alumina Interferometric Immunosensor. ACSNano. 3, 3301–3307 (2009).Krismastuti, F. S. H., Bayat, H., Voelcker, N. H. & Schönherr, H. Real Time Monitoring of Layer-by-Layer Polyelectrolyte Deposition and Bacterial Enzyme Detection in Nanoporous Anodized Aluminum Oxide Anal. Chem. 87, 3856–3863 (2015).Ma, D.-L. et al. A Luminescent Cocaine Detection Platform Using a Split G-Quadruplex-Selective Iridium (III) Complex and a Three-Way DNA Junction Architecture. ACS Appl. Mater. Interfaces. 7, 19060−19067 (2015).Kohli, P. et al. DNA-Functionalized Nanotube Membranes with Single-Base Mismatch Selectivity. Science 305, 984–986 (2004).Abelow, A. E. et al. Biomimetic glass nanopores employing aptamer gates responsive to a small molecule. Chem. Commun. 46, 7984–7986 (2010).Ma, D.-L., Chan, D. S.-H. & Leung, C.-H. Group 9 Organometallic Compounds for Therapeutic and Bioanalytical Applications. Acc. Chem. Res. 47, 3614–3631 (2014).Wanga, G., Zhua, Y., Chena, L. & Zhanga, X. Photoinduced electron transfer (PET) based label-free aptasensor for platelet-derived growth factor-BB and its logic gate application. Biosens. Bioelectron. 63, 552–557 (2015).Laptenko, O. et al. The p53 C Terminus Controls Site-Specific DNA Binding and Promotes Structural Changes within the Central DNA Binding Domain. Molec. Cell. 57, 1034–1046 (2015).McKeague, M. & DeRosa, M. C. Challenges and Opportunities for Small Molecule Aptamer Development. J. Nucleic Acids. 2012, 1–20 (2012).McKeague, M. et al. Analysis of In Vitro Aptamer Selection Parameters, J. Mol. Evol. 81, 150–161 (2015).Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature. 346, 818–822 (1990).Wochner, A. et al. A DNA aptamer with high affinity and specificity for therapeutic anthracyclines. Anal Biochem. 373, 34–42 (2008).Song, K. M., Jeong, E., Jeon, W., Cho, M. & Ban, C. Aptasensor for ampicillin using gold nanoparticle based dual fluorescence-colorimetric methods. Anal. Bioanal. Chem. 402, 2153–2161 (2012).Özalp, V. C. & Schäfer, T. Aptamer-Based Switchable Nanovalves for Stimuli-Responsive Drug Delivery. Chem. Eur. J. 17, 9893–9896 (2011).Stojanovic, M. N., de Prada, P. & Landry, D. W. Aptamer-Based Folding Fluorescent Sensor for Cocaine. J. Am. Chem Soc. 123, 4928–4931 (2001).Wen, Y. et al. DNA-based intelligent logic controlled release systems. Chem. Commun. 48, 8410–8412 (2012).Chen, L. et al. Programmable DNA switch for bioresponsive controlled release. J. Mater. Chem. 21, 13811–13816 (2011).Oroval, M. et al. An aptamer-gated silica mesoporous material for thrombin detection. Chem. Commun. 49, 5480–5482 (2013).Barroso, M., Gallardo, E. & Queiroz, J. A. Bioanalytical methods for the determination of cocaine and metabolites in human biological samples. Bioanalysis. 1, 977–1000 (2009).Phan, H. M., Yoshizuka, K., Murry, D. J. & Perry, P. J. Drug testing in the workplace. Pharmacotherapy. 32, 649–656 (2012).Kidwell, D. A., Blanco, M. A. & P. Smith, F. P. Cocaine detection in a university population by hair analysis and skin swab testing. Forensic Sci. Int. 84, 75–86 (1997).Swensen, J. S. et al. Continuous, Real-Time Monitoring of Cocaine in Undiluted Blood Serum via a Microfluidic, Electrochemical Aptamer-Based Sensor. J. Am. Chem. Soc. 131, 4262–4266 (2009).Cai, Q. et al. Determination of cocaine on banknotes through an aptamer-based electrochemiluminescence biosensor. Anal. Bioanal. Chem. 400, 289–294 (2011).Zou, R. et al. Highly specific triple-fragment aptamer for optical detection of cocaine. RSC Adv. 2, 4636–4638 (2012).Qiu, L. et al. A novel label-free fluorescence aptamer-based sensor method for cocaine detection based on isothermal circular strand-displacement amplification and graphene oxide absorption. New J. Chem. 37, 3998 (2013).Marsal, L. F., Vojkuvka, L., Formentin, P., Pallarés, J. & Ferré-Borrull, J. Fabrication and Optical Characterization of Nanoporous Alumina Films Annealed at Different Temperatures. Optical Mater. 31, 860–864 (2009).Bosker, W. M. & Huestis, M. A. Oral Fluid Testing for Drugs of Abuse. Clinical Chem. 55, 1910–1931 (2009).Kolbrich, E. A. et al. Cozart® RapiScan Oral Fluid Drug Testing System: An Evaluation of Sensitivity, Specificity, and Efficiency for Cocaine Detection Compared with ELISA and GC-MS Following Controlled Cocaine Administration. J. Anal Toxicol. 27, 407–411 (2003).Cooper, G., Wilson, L., Reid, C., Main, L. & Hand, C. Evaluation of the Cozart® RapiScan drug test system for opiates and cocaine in oral fluid. Forensic Sci. Int. 150, 239–243 (2005).Chang, Y. H. et al. Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip. Lab Chip. 12, 3020–3023 (2012).Walczak, R. et al. Toward Portable Instrumentation for Quantitative Cocaine Detection with Lab-on-a-Paper and Hybrid Optical Readout. Procedia Chem. 1, 999–1002 (2009).Qiu, L. et al. A novel label-free fluorescence aptamer-based sensor method for cocaine detection based on isothermal circular strand-displacement amplification and graphene oxide absorption. New J. Chem. 37, 3998–4003 (2013)
The two phases of the Cambrian Explosion
Abstract The dynamics of how metazoan phyla appeared and evolved – known as the Cambrian Explosion – remains elusive. We present a quantitative analysis of the temporal distribution (based on occurrence data of fossil species sampled in each time interval) of lophotrochozoan skeletal species (n = 430) from the terminal Ediacaran to Cambrian Stage 5 (~545 – ~505 Million years ago (Ma)) of the Siberian Platform, Russia. We use morphological traits to distinguish between stem and crown groups. Possible skeletal stem group lophophorates, brachiopods, and molluscs (n = 354) appear in the terminal Ediacaran (~542 Ma) and diversify during the early Cambrian Terreneuvian and again in Stage 2, but were devastated during the early Cambrian Stage 4 Sinsk extinction event (~513 Ma) never to recover previous diversity. Inferred crown group brachiopod and mollusc species (n = 76) do not appear until the Fortunian, ~537 Ma, radiate in the early Cambrian Stage 3 (~522 Ma), and with minimal loss of diversity at the Sinsk Event, continued to diversify into the Ordovician. The Sinsk Event also removed other probable stem groups, such as archaeocyath sponges. Notably, this diversification starts before, and extends across the Ediacaran/Cambrian boundary and the Basal Cambrian Carbon Isotope Excursion (BACE) interval (~541 to ~540 Ma), ascribed to a possible global perturbation of the carbon cycle. We therefore propose two phases of the Cambrian Explosion separated by the Sinsk extinction event, the first dominated by stem groups of phyla from the late Ediacaran, ~542 Ma, to early Cambrian stage 4, ~513 Ma, and the second marked by radiating bilaterian crown group species of phyla from ~513 Ma and extending to the Ordovician Radiation
Feasibility of Electronic Medication Monitoring Among Adolescents and Emerging Adults with Sickle Cell Disease
Aimee K Hildenbrand,1– 3 Katherine M Kidwell,4 Meghan E McGrady,5,6 Constance A Mara,5,6 Charles T Quinn,6,7 Lori E Crosby5,6 1Center for Healthcare Delivery Science, Nemours Children’s Health, Wilmington, DE, USA; 2Division of Behavioral Health, Nemours Children’s Hospital Delaware, Wilmington, DE, USA; 3Department of Pediatrics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; 4Department of Psychology, Syracuse University, Syracuse, NY, USA; 5Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA; 6Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; 7Division of Hematology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USACorrespondence: Aimee K Hildenbrand, Nemours Center for Healthcare Delivery Science, 1600 Rockland Road, RC-1, Suite 160, Wilmington, DE, 19803, USA, Tel +1-302-298-7874, Email [email protected]: To examine the feasibility of using MEMS® bottles to assess adherence among adolescents and emerging adults with sickle cell disease.Patients and Methods: Eighteen non-Hispanic Black participants with HbSS (M = 17.8 years; 61% male) were given a MEMS® bottle to store hydroxyurea (n = 14) or deferasirox (n = 4).Results: One hundred percent initiated MEMS® use and 61% sustained use through the 18-week study; at follow-up, only 11% returned their bottle on time. Barriers to MEMS® use included medication changes and transition to adult care; facilitators included tip sheets and reminders.Conclusion: While MEMS® is acceptable to this population, ensuring sustained use and timely provision of bottles will require additional supports.Keywords: adherence, MEMS, medicine, sickle cell anemi
- …