1,170 research outputs found
Creation of ultracold molecules from a Fermi gas of atoms
Since the realization of Bose-Einstein condensates (BEC) in atomic gases an
experimental challenge has been the production of molecular gases in the
quantum regime. A promising approach is to create the molecular gas directly
from an ultracold atomic gas; for example, atoms in a BEC have been coupled to
electronic ground-state molecules through photoassociation as well as through a
magnetic-field Feshbach resonance. The availability of atomic Fermi gases
provides the exciting prospect of coupling fermionic atoms to bosonic
molecules, and thus altering the quantum statistics of the system. This
Fermi-Bose coupling is closely related to the pairing mechanism for a novel
fermionic superfluid proposed to occur near a Feshbach resonance. Here we
report the creation and quantitative characterization of exotic, ultracold
K molecules. Starting with a quantum degenerate Fermi gas of atoms
at T < 150 nanoKelvin we scan over a Feshbach resonance to adiabatically create
over a quarter million trapped molecules, which we can convert back to atoms by
reversing the scan. The small binding energy of the molecules is controlled by
detuning from the Feshbach resonance and can be varied over a wide range. We
directly detect these weakly bound molecules through rf photodissociation
spectra that probe the molecular wavefunction and yield binding energies that
are consistent with theory
Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii
Toxoplasma gondii contains an expanded number of calmodulin (CaM)-like proteins whose functions are poorly understood. Using a combination of CRISPR/Cas9-mediated gene editing and a plant-like auxin-induced degron (AID) system, we examined the roles of three apically localized CaMs. CaM1 and CaM2 were individually dispensable, but loss of both resulted in a synthetic lethal phenotype. CaM3 was refractory to deletion, suggesting it is essential. Consistent with this prediction auxin-induced degradation of CaM3 blocked growth. Phenotypic analysis revealed that all three CaMs contribute to parasite motility, invasion, and egress from host cells, and that they act downstream of microneme and rhoptry secretion. Super-resolution microscopy localized all three CaMs to the conoid where they overlap with myosin H (MyoH), a motor protein that is required for invasion. Biotinylation using BirA fusions with the CaMs labeled a number of apical proteins including MyoH and its light chain MLC7, suggesting they may interact. Consistent with this hypothesis, disruption of MyoH led to degradation of CaM3, or redistribution of CaM1 and CaM2. Collectively, our findings suggest these CaMs may interact with MyoH to control motility and cell invasion
Novel, synergistic antifungal combinations that target translation fidelity
There is an unmet need for new antifungal or fungicide treatments, as resistance to existing treatments grows. Combination treatments help to combat resistance. Here we develop a novel, effective target for combination antifungal therapy. Different aminoglycoside antibiotics combined with different sulphate-transport inhibitors produced strong, synergistic growth-inhibition of several fungi. Combinations decreased the respective MICs by ≥8 fold. Synergy was suppressed in yeast mutants resistant to effects of sulphate-mimetics (like chromate or molybdate) on sulphate transport. By different mechanisms, aminoglycosides and inhibition of sulphate transport cause errors in mRNA translation. The mistranslation rate was stimulated up to 10-fold when the agents were used in combination, consistent with this being the mode of synergistic action. A range of undesirable fungi were susceptible to synergistic inhibition by the combinations, including the human pathogens Candida albicans, C. glabrata and Cryptococcus neoformans, the food spoilage organism Zygosaccharomyces bailii and the phytopathogens Rhizoctonia solani and Zymoseptoria tritici. There was some specificity as certain fungi were unaffected. There was no synergy against bacterial or mammalian cells. The results indicate that translation fidelity is a promising new target for combinatorial treatment of undesirable fungi, the combinations requiring substantially decreased doses of active components compared to each agent alone
A Regularized Graph Layout Framework for Dynamic Network Visualization
Many real-world networks, including social and information networks, are
dynamic structures that evolve over time. Such dynamic networks are typically
visualized using a sequence of static graph layouts. In addition to providing a
visual representation of the network structure at each time step, the sequence
should preserve the mental map between layouts of consecutive time steps to
allow a human to interpret the temporal evolution of the network. In this
paper, we propose a framework for dynamic network visualization in the on-line
setting where only present and past graph snapshots are available to create the
present layout. The proposed framework creates regularized graph layouts by
augmenting the cost function of a static graph layout algorithm with a grouping
penalty, which discourages nodes from deviating too far from other nodes
belonging to the same group, and a temporal penalty, which discourages large
node movements between consecutive time steps. The penalties increase the
stability of the layout sequence, thus preserving the mental map. We introduce
two dynamic layout algorithms within the proposed framework, namely dynamic
multidimensional scaling (DMDS) and dynamic graph Laplacian layout (DGLL). We
apply these algorithms on several data sets to illustrate the importance of
both grouping and temporal regularization for producing interpretable
visualizations of dynamic networks.Comment: To appear in Data Mining and Knowledge Discovery, supporting material
(animations and MATLAB toolbox) available at
http://tbayes.eecs.umich.edu/xukevin/visualization_dmkd_201
Tearing Out the Income Tax by the (Grass)Roots
Landscapes are increasingly fragmented, and conservation programs have started to look at network approaches for maintaining populations at a larger scale. We present an agent-based model of predator–prey dynamics where the agents (i.e. the individuals of either the predator or prey population) are able to move between different patches in a landscaped network. We then analyze population level and coexistence probability given node-centrality measures that characterize specific patches. We show that both predator and prey species benefit from living in globally well-connected patches (i.e. with high closeness centrality). However, the maximum number of prey species is reached, on average, at lower closeness centrality levels than for predator species. Hence, prey species benefit from constraints imposed on species movement in fragmented landscapes since they can reproduce with a lesser risk of predation, and their need for using anti-predatory strategies decreases.authorCount :
Content-Aware Unsupervised Deep Homography Estimation
Homography estimation is a basic image alignment method in many applications.
It is usually conducted by extracting and matching sparse feature points, which
are error-prone in low-light and low-texture images. On the other hand,
previous deep homography approaches use either synthetic images for supervised
learning or aerial images for unsupervised learning, both ignoring the
importance of handling depth disparities and moving objects in real world
applications. To overcome these problems, in this work we propose an
unsupervised deep homography method with a new architecture design. In the
spirit of the RANSAC procedure in traditional methods, we specifically learn an
outlier mask to only select reliable regions for homography estimation. We
calculate loss with respect to our learned deep features instead of directly
comparing image content as did previously. To achieve the unsupervised
training, we also formulate a novel triplet loss customized for our network. We
verify our method by conducting comprehensive comparisons on a new dataset that
covers a wide range of scenes with varying degrees of difficulties for the
task. Experimental results reveal that our method outperforms the
state-of-the-art including deep solutions and feature-based solutions.Comment: Accepted by ECCV 2020 (Oral, Top 2%, 3 over 3 Strong Accepts). Jirong
Zhang and Chuan Wang are joint first authors, and Shuaicheng Liu is the
corresponding autho
RNAi Targeting of West Nile Virus in Mosquito Midguts Promotes Virus Diversification
West Nile virus (WNV) exists in nature as a genetically diverse population of competing genomes. This high genetic diversity and concomitant adaptive plasticity has facilitated the rapid adaptation of WNV to North American transmission cycles and contributed to its explosive spread throughout the New World. WNV is maintained in nature in a transmission cycle between mosquitoes and birds, with intrahost genetic diversity highest in mosquitoes. The mechanistic basis for this increase in genetic diversity in mosquitoes is poorly understood. To determine whether the high mutational diversity of WNV in mosquitoes is driven by RNA interference (RNAi), we characterized the RNAi response to WNV in the midguts of orally exposed Culex pipiens quinquefasciatus using high-throughput, massively parallel sequencing and estimated viral genetic diversity. Our data demonstrate that WNV infection in orally exposed vector mosquitoes induces the RNAi pathway and that regions of the WNV genome that are more intensely targeted by RNAi are more likely to contain point mutations compared to weakly targeted regions. These results suggest that, under natural conditions, positive selection of WNV within mosquitoes is stronger in regions highly targeted by the host RNAi response. Further, they provide a mechanistic basis for the relative importance of mosquitoes in driving WNV diversification
Radiotherapy of solitary plasmacytoma
International audienceSolitary plasmacytoma of the bone (SBP) or extramedullary plasmacytoma (EP) are rare neoplasms amenable to local radiotherapy. In this retrospective analysis, we report the University Heidelberg experience in the treatment of solitary plasmacytoma. From 1995 to 2008, 18 patients were treated with local radiotherapy. Ten patients suffered from SBP, eight patients showed a single extramedullary lesion. Local radiotherapy with a median dose of 45 Gy yielded excellent local control with only one patient suffering from local relapse. SBP and EP had significantly different 5-year multiple myeloma-free survival rates of 36.8% and 86.7%, respectively. However, no significant difference in overall survival could be detected. Radiotherapy can achieve excellent local control of solitary plasmacytoma. Progression to multiple myeloma, especially in the case of SBP, remains to be addressed by further studies
The “ebb and flow” of student learning on placement
There is a rise in interest in work based learning as part of student choice at subject level in the UK (DOE 2017) but there remains an absence of specific guidance on how to best support higher education students learning on placement. An alternative HE experience in England, the degree apprenticeship, underlies the continued focus by policy in securing placement experiences for students without stipulating the type of support that is required at the ‘coal face’ of work based learning. Policy documents (UUK 2016), that urge universities to enter into partnership agreements with both employers and FE colleges to plug skills shortages, are noticeably lacking in their appreciation of the unique qualities of work based learning and how best to support students in this setting (Morley 2017a). Unfortunately, this is not unusual as placements have predominantly been an enriching ‘add on’ to the real business of academic learning in more traditional university programmes. Support initiatives, such as that described in chapter 9, are a rare appreciation of the importance of this role. Undergraduate nursing programmes currently support a 50:50 split between practice learning in clinical placements and the theory delivered at universities. Vocational degrees, such as this, provide an interesting case study as to how students can be supported in the practice environment by an appreciation of how students really learn on placement and how hidden resources can be utilised more explicitly for practice learning. During 2013 – 2015 a professional doctorate research study (Morley 2015) conducted a grounded theory study of 21 first year student nurses on their first placement to discover how they learnt ‘at work’ and the strategies they enlisted to be successful work based learners
International Delegations and the Values of Federalism
Inland water sediments receive large quantities of terrestrial organic matter(1-5) and are globally important sites for organic carbon preservation(5,6). Sediment organic matter mineralization is positively related to temperature across a wide range of high-latitude ecosystems(6-10), but the situation in the tropics remains unclear. Here we assessed temperature effects on the biological production of CO2 and CH4 in anaerobic sediments of tropical lakes in the Amazon and boreal lakes in Sweden. On the basis of conservative regional warming projections until 2100 (ref. 11), we estimate that sediment CO2 and CH4 production will increase 9-61% above present rates. Combining the CO2 and CH4 as CO2 equivalents (CO(2)eq; ref. 11), the predicted increase is 2.4-4.5 times higher in tropical than boreal sediments. Although the estimated lake area in low latitudes is 3.2 times smaller than that of the boreal zone, we estimate that the increase in gas production from tropical lake sediments would be on average 2.4 times higher for CO2 and 2.8 times higher for CH4. The exponential temperature response of organic matter mineralization, coupled with higher increases in the proportion of CH4 relative to CO2 on warming, suggests that the production of greenhouse gases in tropical sediments will increase substantially. This represents a potential large-scale positive feedback to climate change
- …