17 research outputs found

    Genotoxic agents promote the nuclear accumulation of annexin A2: role of annexin A2 in mitigating DNA damage

    Get PDF
    Annexin A2 is an abundant cellular protein that is mainly localized in the cytoplasm and plasma membrane, however a small population has been found in the nucleus, suggesting a nuclear function for the protein. Annexin A2 possesses a nuclear export sequence (NES) and inhibition of the NES is sufficient to cause nuclear accumulation. Here we show that annexin A2 accumulates in the nucleus in response to genotoxic agents including gamma-radiation, UV radiation, etoposide and chromium VI and that this event is mediated by the nuclear export sequence of annexin A2. Nuclear accumulation of annexin A2 is blocked by the antioxidant agent N-acetyl cysteine (NAC) and stimulated by hydrogen peroxide (H2O2), suggesting that this is a reactive oxygen species dependent event. In response to genotoxic agents, cells depleted of annexin A2 show enhanced phospho-histone H2AX and p53 levels, increased numbers of p53-binding protein 1 nuclear foci and increased levels of nuclear 8-oxo-2'-deoxyguanine, suggesting that annexin A2 plays a role in protecting DNA from damage. This is the first report showing the nuclear translocation of annexin A2 in response to genotoxic agents and its role in mitigating DNA damage.Natural Sciences and Engineering Research Council of Canada (NSERC); European Union [PCOFUND-GA-2009-246542]; Foundation for Science and Technology of Portugal; Beatrice Hunter Cancer Research Institute; Terry Fox Foundationinfo:eu-repo/semantics/publishedVersio

    Molecular pathway profiling of T lymphocyte signal transduction pathways; Th1 and Th2 genomic fingerprints are defined by TCR and CD28-mediated signaling

    Get PDF
    Contains fulltext : 108719.pdf (publisher's version ) (Open Access)BACKGROUND: T lymphocytes are orchestrators of adaptive immunity. Naive T cells may differentiate into Th1, Th2, Th17 or iTreg phenotypes, depending on environmental co-stimulatory signals. To identify genes and pathways involved in differentiation of Jurkat T cells towards Th1 and Th2 subtypes we performed comprehensive transcriptome analyses of Jurkat T cells stimulated with various stimuli and pathway inhibitors. Results from these experiments were validated in a human experimental setting using whole blood and purified CD4+ Tcells. RESULTS: Calcium-dependent activation of T cells using CD3/CD28 and PMA/CD3 stimulation induced a Th1 expression profile reflected by increased expression of T-bet, RUNX3, IL-2, and IFNgamma, whereas calcium-independent activation via PMA/CD28 induced a Th2 expression profile which included GATA3, RXRA, CCL1 and Itk. Knock down with siRNA and gene expression profiling in the presence of selective kinase inhibitors showed that proximal kinases Lck and PKCtheta are crucial signaling hubs during T helper cell activation, revealing a clear role for Lck in Th1 development and for PKCtheta in both Th1 and Th2 development. Medial signaling via MAPkinases appeared to be less important in these pathways, since specific inhibitors of these kinases displayed a minor effect on gene expression. Translation towards a primary, whole blood setting and purified human CD4+ T cells revealed that PMA/CD3 stimulation induced a more pronounced Th1 specific, Lck and PKCtheta dependent IFNgamma production, whereas PMA/CD28 induced Th2 specific IL-5 and IL-13 production, independent of Lck activation. PMA/CD3-mediated skewing towards a Th1 phenotype was also reflected in mRNA expression of the master transcription factor Tbet, whereas PMA/CD28-mediated stimulation enhanced GATA3 mRNA expression in primary human CD4+ Tcells. CONCLUSIONS: This study identifies stimulatory pathways and gene expression profiles for in vitro skewing of T helper cell activation. PMA/CD3 stimulation enhances a Th1-like response in an Lck and PKCtheta dependent fashion, whereas PMA/CD28 stimulation results in a Th2-like phenotype independent of the proximal TCR-tyrosine kinase Lck. This approach offers a robust and fast translational in vitro system for skewed T helper cell responses in Jurkat T cells, primary human CD4+ Tcells and in a more complex matrix such as human whole blood

    Comparative analysis of differentially expressed sequence tags of sweet orange and mandarin infected with Xylella fastidiosa

    No full text
    The Citrus ESTs Sequencing Project (CitEST) conducted at Centro APTA Citros Sylvio Moreira/IAC has identified and catalogued ESTs representing a set of citrus genes expressed under relevant stress responses, including diseases such as citrus variegated chlorosis (CVC), caused by Xylella fastidiosa. All sweet orange (Citrus sinensis L. Osb.) varieties are susceptible to X. fastidiosa. On the other hand, mandarins (C. reticulata Blanco) are considered tolerant or resistant to the disease, although the bacterium can be sporadically detected within the trees, but no disease symptoms or economic losses are observed. To study their genetic responses to the presence of X. fastidiosa, we have compared EST libraries of leaf tissue of sweet orange PĂȘra IAC (highly susceptible cultivar to X. fastidiosa) and mandarin ‘Ponkan’ (tolerant) artificially infected with the bacterium. Using an in silico differential display, 172 genes were found to be significantly differentially expressed in such conditions. Sweet orange presented an increase in expression of photosynthesis related genes that could reveal a strategy to counterbalance a possible lower photosynthetic activity resulting from early effects of the bacterial colonization in affected plants. On the other hand, mandarin showed an active multi-component defense response against the bacterium similar to the non-host resistance pattern
    corecore