15 research outputs found

    Association Mapping across Numerous Traits Reveals Patterns of Functional Variation in Maize.

    No full text
    Phenotypic variation in natural populations results from a combination of genetic effects, environmental effects, and gene-by-environment interactions. Despite the vast amount of genomic data becoming available, many pressing questions remain about the nature of genetic mutations that underlie functional variation. We present the results of combining genome-wide association analysis of 41 different phenotypes in ∌5,000 inbred maize lines to analyze patterns of high-resolution genetic association among of 28.9 million single-nucleotide polymorphisms (SNPs) and ∌800,000 copy-number variants (CNVs). We show that genic and intergenic regions have opposite patterns of enrichment, minor allele frequencies, and effect sizes, implying tradeoffs among the probability that a given polymorphism will have an effect, the detectable size of that effect, and its frequency in the population. We also find that genes tagged by GWAS are enriched for regulatory functions and are ∌50% more likely to have a paralog than expected by chance, indicating that gene regulation and gene duplication are strong drivers of phenotypic variation. These results will likely apply to many other organisms, especially ones with large and complex genomes like maize

    Autoimmune effector memory T cells: the bad and the good

    No full text
    Immunological memory is a hallmark of adaptive immunity, a defense mechanism endowed to vertebrates during evolution. However, an autoimmune pathogenic role of memory lymphocytes is also emerging with accumulating evidence, despite reasonable skepticism on their existence in a chronic setting of autoimmune damage. It is conceivable that autoimmune memory would be particularly harmful since memory cells would constantly “remember” and attack the body's healthy tissues. It is even more detrimental given the resistance of memory T cells to immunomodulatory therapies. In this review, we focus on self-antigen-reactive CD4(+) effector memory T (T(EM)) cells, surveying the evidence for the role of the T(EM) compartment in autoimmune pathogenesis. We will also discuss the role of T(EM) cells in chronic and acute infectious disease settings and how they compare to their counterparts in autoimmune diseases. With their long-lasting potency, the autoimmune T(EM) cells could also play a critical role in anti-tumor immunity, which may be largely based on their reactivity to self-antigens. Therefore, although autoimmune T(EM) cells are “bad” due to their role in relentless perpetration of tissue damage in autoimmune disease settings, they are unlikely a by-product of industrial development along the modern surge of autoimmune disease prevalence. Rather, they may be a product of evolution for their “good” in clearing damaged host cells in chronic infections and malignant cells in cancer settings
    corecore