464 research outputs found

    OX40 and 4-1BB delineate distinct immune profiles in sarcoma.

    Get PDF
    Systemic relapse after radiotherapy and surgery is the major cause of disease-related mortality in sarcoma patients. Combining radiotherapy and immunotherapy is under investigation as a means to improve response rates. However, the immune contexture of sarcoma is understudied. Here, we use a retrospective cohort of sarcoma patients, treated with neoadjuvant radiotherapy, and TCGA data. We explore therapeutic targets of relevance to sarcoma, using genomics and multispectral immunohistochemistry to provide insights into the tumor immune microenvironment across sarcoma subtypes. Differential gene expression between radioresponsive myxoid liposarcoma (MLPS) and more radioresistant undifferentiated pleomorphic sarcoma (UPS) indicated UPS contained higher transcript levels of a number of immunotherapy targets (CD73/NT5E, CD39/ENTPD1, CD25/IL2RA, and 4-1BB/TNFRSF9). We focused on 4-1BB/TNFRSF9 and other costimulatory molecules. In TCGA data, 4-1BB correlated to an inflamed and exhausted phenotype. OX40/TNFRSF4 and 4-1BB/TNFRSF9 were highly expressed in sarcoma subtypes versus other cancers. Despite OX40 and 4-1BB being described as Treg markers, we identified that they delineate distinct tumor immune profiles. This was true for sarcoma and other cancers. While only a limited number of samples could be analyzed, spatial analysis of OX40 expression identified two diverse phenotypes of OX40+ Tregs, one associated with and one independent of tertiary lymphoid structures (TLSs). Patient stratification is of intense interest for immunotherapies. We provide data supporting the viewpoint that a cohort of sarcoma patients, appropriately selected, are promising candidates for immunotherapies. Spatial profiling of OX40+ Tregs, in relation to TLSs, could be an additional metric to improve future patient stratification

    Correction to: The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson's disease.

    Get PDF
    Following publication of the original article [1], the author identified an error in Fig. 4E. The data and statistics were correct, but the synaptophysin blot was incorrect. The incorrect (Fig. 1) and correct figure (Fig. 2) are shown in this correction article. (Figure presented.)

    The plight of the sense-making ape

    Get PDF
    This is a selective review of the published literature on object-choice tasks, where participants use directional cues to find hidden objects. This literature comprises the efforts of researchers to make sense of the sense-making capacities of our nearest living relatives. This chapter is written to highlight some nonsensical conclusions that frequently emerge from this research. The data suggest that when apes are given approximately the same sense-making opportunities as we provide our children, then they will easily make sense of our social signals. The ubiquity of nonsensical contemporary scientific claims to the effect that humans are essentially--or inherently--more capable than other great apes in the understanding of simple directional cues is, itself, a testament to the power of preconceived ideas on human perception

    The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson's disease

    Full text link
    Elevated iron in the SNpc may play a key role in Parkinson's disease (PD) neurodegeneration since drug candidates with high iron affinity rescue PD animal models, and one candidate, deferirpone, has shown efficacy recently in a phase two clinical trial. However, strong iron chelators may perturb essential iron metabolism, and it is not yet known whether the damage associated with iron is mediated by a tightly bound (eg ferritin) or lower-affinity, labile, iron pool. Here we report the preclinical characterization of PBT434, a novel quinazolinone compound bearing a moderate affinity metal-binding motif, which is in development for Parkinsonian conditions. In vitro, PBT434 was far less potent than deferiprone or deferoxamine at lowering cellular iron levels, yet was found to inhibit iron-mediated redox activity and iron-mediated aggregation of α-synuclein, a protein that aggregates in the neuropathology. In vivo, PBT434 did not deplete tissue iron stores in normal rodents, yet prevented loss of substantia nigra pars compacta neurons (SNpc), lowered nigral α-synuclein accumulation, and rescued motor performance in mice exposed to the Parkinsonian toxins 6-OHDA and MPTP, and in a transgenic animal model (hA53T α-synuclein) of PD. These improvements were associated with reduced markers of oxidative damage, and increased levels of ferroportin (an iron exporter) and DJ-1. We conclude that compounds designed to target a pool of pathological iron that is not held in high-affinity complexes in the tissue can maintain the survival of SNpc neurons and could be disease-modifying in PD

    Vaccines against toxoplasma gondii : challenges and opportunities

    Get PDF
    Development of vaccines against Toxoplasma gondii infection in humans is of high priority, given the high burden of disease in some areas of the world like South America, and the lack of effective drugs with few adverse effects. Rodent models have been used in research on vaccines against T. gondii over the past decades. However, regardless of the vaccine construct, the vaccines have not been able to induce protective immunity when the organism is challenged with T. gondii, either directly or via a vector. Only a few live, attenuated T. gondii strains used for immunization have been able to confer protective immunity, which is measured by a lack of tissue cysts after challenge. Furthermore, challenge with low virulence strains, especially strains with genotype II, will probably be insufficient to provide protection against the more virulent T. gondii strains, such as those with genotypes I or II, or those genotypes from South America not belonging to genotype I, II or III. Future studies should use animal models besides rodents, and challenges should be performed with at least one genotype II T. gondii and one of the more virulent genotypes. Endpoints like maternal-foetal transmission and prevention of eye disease are important in addition to the traditional endpoint of survival or reduction in numbers of brain cysts after challenge

    Spatially modulated "Mottness" in La2-xBaxCuO4

    Full text link
    Stripe phases were predicted to arise in doped antiferromagnets through competition between magnetism and the kinetic energy of mobile carriers (typically holes). In copper-oxides the main experimental evidence for stripes is neutron scattering from La1.48Nd0.4Sr0.12CuO4 (LNSCO) and La1.875Ba0.125CuO4 (LBCO) which reveals coexisting static spin and charge order whose wavelengths differ by a factor of two, reminiscent of charged rivers separating regions of oppositely-phased antiferromagnetism. A neutron is an electrically neutral object, however, so does not detect charge but rather its associated lattice distortion ; it is not known if the "stripe" phase in LNSCO and LBCO actually involves ordering of the doped holes. Here we present a study of the charge order in LBCO with resonant soft x-ray scattering (RSXS). We observe giant resonances at both the mobile carrier and upper-Hubbard band features in the OK edge. These demonstrate a substantial modulation in the doped hole density as well as the amount of spectral weight near the correlated gap, i.e. the degree of "Mottness". The peak-to-trough amplitude of the valence modulation is estimated to be 0.063 holes, which if interpreted with a model of the stripe form factor suggests an integrated area of 0.59 holes under a single stripe. While only an estimate, this number agrees with what is expected for half-filled stripes.Comment: 12 pages, 4 figures, to appear in Nature Physic

    Targeted Ablation of Oligodendrocytes Triggers Axonal Damage

    Get PDF
    Glial dysfunction has been implicated in a number of neurodegenerative diseases. In this study we investigated the consequences of glial and oligodendrocyte ablation on neuronal integrity and survival in Drosophila and adult mice, respectively. Targeted genetic ablation of glia was achieved in the adult Drosophila nervous system using the GAL80-GAL4 system. In mice, oligodendrocytes were depleted by the injection of diphtheria toxin in MOGi-Cre/iDTR double transgenic animals. Acute depletion of oligodendrocytes induced axonal injury, but did not cause neuronal cell death in mice. Ablation of glia in adult flies triggered neuronal apoptosis and resulted in a marked reduction in motor performance and lifespan. Our study shows that the targeted depletion of glia triggers secondary neurotoxicity and underscores the central contribution of glia to neuronal homeostasis. The models used in this study provide valuable systems for the investigation of therapeutic strategies to prevent axonal or neuronal damage

    Underlying Dimensions of DSM-5 Posttraumatic Stress Disorder and Major Depressive Disorder Symptoms

    Get PDF
    This study examined the relationship between the underlying latent factors of major depression symptoms and DSM-5 posttraumatic stress disorder (PTSD) symptoms (American Psychiatric Association, 2013). A nonclinical sample of 266 participants with a trauma history participated in the study. Confirmatory factor analyses were conducted to evaluate the fit of the DSM-5 PTSD model and dysphoria model, as well as a depression model comprised of somatic and nonsomatic factors. The DSM-5 PTSD model demonstrated somewhat better fit over the dysphoria model. Wald tests indicated that PTSD's negative alterations in cognitions and mood factor was more strongly related to depression's nonsomatic factor than its somatic factor. This study furthers a nascent line of research examining the relationship between PTSD and depression factors in order to better understand the nature of the high comorbidity rates between the two disorders. Moreover, this study provides an initial analysis of the new DSM-5 diagnostic criteria for PTSD

    2′-O Methylation of the Viral mRNA Cap by West Nile Virus Evades Ifit1-Dependent and -Independent Mechanisms of Host Restriction In Vivo

    Get PDF
    Prior studies have shown that 2′-O methyltransferase activity of flaviviruses, coronaviruses, and poxviruses promotes viral evasion of Ifit1, an interferon-stimulated innate immune effector protein. Viruses lacking 2′-O methyltransferase activity exhibited attenuation in primary macrophages that was rescued in cells lacking Ifit1 gene expression. Here, we examined the role of Ifit1 in restricting pathogenesis in vivo of wild type WNV (WNV-WT) and a mutant in the NS5 gene (WNV-E218A) lacking 2′-O methylation of the 5′ viral RNA cap. While deletion of Ifit1 had marginal effects on WNV-WT pathogenesis, WNV-E218A showed increased replication in peripheral tissues of Ifit1−/− mice after subcutaneous infection, yet this failed to correlate with enhanced infection in the brain or lethality. In comparison, WNV-E218A was virulent after intracranial infection as judged by increased infection in different regions of the central nervous system (CNS) and a greater than 16,000-fold decrease in LD50 values in Ifit1−/− compared to wild type mice. Ex vivo infection experiments revealed cell-type specific differences in the ability of an Ifit1 deficiency to complement the replication defect of WNV-E218A. In particular, WNV-E218A infection was impaired in both wild type and Ifit1−/− brain microvascular endothelial cells, which are believed to participate in blood-brain barrier (BBB) regulation of virus entry into the CNS. A deficiency of Ifit1 also was associated with increased neuronal death in vivo, which was both cell-intrinsic and mediated by immunopathogenic CD8+ T cells. Our results suggest that virulent strains of WNV have largely evaded the antiviral effects of Ifit1, and viral mutants lacking 2′-O methylation are controlled in vivo by Ifit1-dependent and -independent mechanisms in different cell types
    corecore