5 research outputs found

    Assessing Host-Virus Codivergence for Close Relatives of Merkel Cell Polyomavirus Infecting African Great Apes

    Get PDF
    It has long been hypothesized that polyomaviruses (PyV; family Polyomaviridae) codiverged with their animal hosts. In contrast, recent analyses suggested that codivergence may only marginally influence the evolution of PyV. We reassess this question by focusing on a single lineage of PyV infecting hominine hosts, the Merkel cell polyomavirus (MCPyV) lineage. By characterizing the genetic diversity of these viruses in seven African great ape taxa, we show that they exhibit very strong host specificity. Reconciliation analyses identify more codivergence than noncodivergence events. In addition, we find that a number of host and PyV divergence events are synchronous. Collectively, our results support codivergence as the dominant process at play during the evolution of the MCPyV lineage. More generally, our results add to the growing body of evidence suggesting an ancient and stable association of PyV and their animal hosts

    Timing of the evening emergence from day roosts of the grey-headed flying fox, Pteropus poliocephalus: the effects of predation risk, foraging needs, and social context

    No full text
    This study addresses the functional question of how variation in foraging strategy, predation risk, and social context influence the timing of the evening emergence from day roosts of the grey-headed flying fox, Pteropus poliocephalus. The onset of evening emergence was expected to vary according to the relative costs and benefits of emerging early and should, therefore, reflect an optimal trade-off between predation risks and foraging needs. The onset of the colony-wide emergence was closely correlated with the time of sunset and cloud cover. However, as expected, the onset of the colony-wide emergence was delayed when a diurnal avian predator was present, whereas the onset was advanced during lactation when presumably energetic demands are higher. The trade-off between predation risks and foraging needs was further reflected in the emergence times of individual bats: adult females emerged earlier when they had higher foraging needs as indicated by their body condition; young emerged later when they were smaller and likely to be more at risk from predation due to their less developed flying skills. However, the emergence time of adult males depended on their social status: smaller bachelor males emerged from the colony earlier than larger harem-holding males who guard their harems until the last female had left. Thus, whereas the colony-wide emergence time reflected the outcome of a trade-off between predation risks and general foraging needs, on an individual level, the outcome of this trade-off depended on sex, age, body condition, and structural size and was modified by social context
    corecore