8,384 research outputs found
Environmental psychology must better integrate local cultural and sociodemographic context to inform conservation
This is the final version. Available on open access from Wiley via the DOI in this recor
A 4D Light-Field Dataset and CNN Architectures for Material Recognition
We introduce a new light-field dataset of materials, and take advantage of
the recent success of deep learning to perform material recognition on the 4D
light-field. Our dataset contains 12 material categories, each with 100 images
taken with a Lytro Illum, from which we extract about 30,000 patches in total.
To the best of our knowledge, this is the first mid-size dataset for
light-field images. Our main goal is to investigate whether the additional
information in a light-field (such as multiple sub-aperture views and
view-dependent reflectance effects) can aid material recognition. Since
recognition networks have not been trained on 4D images before, we propose and
compare several novel CNN architectures to train on light-field images. In our
experiments, the best performing CNN architecture achieves a 7% boost compared
with 2D image classification (70% to 77%). These results constitute important
baselines that can spur further research in the use of CNNs for light-field
applications. Upon publication, our dataset also enables other novel
applications of light-fields, including object detection, image segmentation
and view interpolation.Comment: European Conference on Computer Vision (ECCV) 201
Boundaries of Disk-like Self-affine Tiles
Let be a disk-like self-affine tile generated by an
integral expanding matrix and a consecutive collinear digit set , and let be the characteristic polynomial of . In the
paper, we identify the boundary with a sofic system by
constructing a neighbor graph and derive equivalent conditions for the pair
to be a number system. Moreover, by using the graph-directed
construction and a device of pseudo-norm , we find the generalized
Hausdorff dimension where
is the spectral radius of certain contact matrix . Especially,
when is a similarity, we obtain the standard Hausdorff dimension where is the largest positive zero of
the cubic polynomial , which is simpler than
the known result.Comment: 26 pages, 11 figure
Suppression of photoconductivity by magnetic field in epitaxial manganite thin films
The erasure of photoinduced resistance (PR) by the magnetic field was investigated in manganite films. The PR was significantly suppressed when a magnetic field was introduced at low temperature. The decrease (or increase) of PR with increment of magnetic field was observed in ferromagnetic (or paramagnetic) phases of films, respectively. Our results are suggested to be the coaction of two effects under magnetic fields: (i) the reorientation of domains and spin directions of photoexcited carriers and (ii) electrons trapped around oxygen vacancies released and recombined with majority carriers in films. The interplay of the external fields is a good demonstration of the strong coupling between spins and charges in colossal magnetoresistance materials. © 2012 American Institute of Physics.published_or_final_versio
Reducing Energy Consumption and Improving Comfort by Retrofitting Residential Buildings in the Hot Summer and Cold Winter Zone of China
China's Hot Summer and Cold Winter zone, with a 550 million population, accounts for 45% of China's building energy consumption; as such, building retrofits could offer substantial energy savings. This paper presents results from a dynamic thermal modeling study of a typical urban multistory residential building under three types of air conditioning (A/C) operating schedules. Seven energy-saving retrofit measures (external wall insulation, roof insulation, double-glazing, air infiltration control, window shading, communal staircase design, and energy-efficient A/C) were evaluated, and the retrofit strategy with the highest annual energy savings and lowest thermal discomfort was identified. This retrofit strategy was subsequently evaluated for other flats (apartments) with different orientations and positions in the typical building. The annual space-conditioning energy could be reduced by 59%-68%, depending on the flat location, orientation and A/C operating schedule. The findings were then scaled up to estimate the potential energy savings in the city of Chongqing. More than 320 multistory residential buildings were represented by 12 archetypes. Space-conditioning energy consumption was reduced by up to 58% (18.8 TWh). This work provides evidence of the potential energy savings of city-scale retrofit that could aid China in reducing building energy consumption and achieving net-zero carbon emissions by 2050
Vibration suppression and angle tracking of a fire-rescue ladder
This paper mainly considers vibration suppression and angle tracking of a fire-rescue ladder system. The dynamical model is regarded as a segmented Euler–Bernoulli beam with gravity and tip mass, described by a set of motion equations and boundary conditions. Based on the nonlinear Euler–Bernoulli beam model, two active boundary controllers are proposed to achieve the control objectives. The elastic deflection and the angular error in the closed-loop system are proven to converge exponentially to a small neighborhood of zero. Numerical simulations based on finite difference method verify the effectiveness and the ascendancy of active boundary controllers
Recommended from our members
The nature of weather and climate impacts in the energy sector
The power sector’s meteorological information needs are diverse and cover many different distinct applications and users. Recognising this diversity, it is important to understand the general nature of how weather and climate influence the energy sector and the implications they have for quantitative impact modelling. Using conceptual
examples and illustrations from recent research, this chapter argues that the traditional ‘transfer function’ approach that is common to many industrial applications of weather and climate science—whereby weather can be directly mapped to an energy impact—is inadequate for many important power system applications (such as price forecasting and system operations and planning). The chapter concludes by arguing that a deeper understanding of how meteorological impacts in the energy sector are modelled is required
Field-testing of the revised, draft South African Paediatric Food-Based Dietary Guidelines amongst mothers/caregivers of children aged 0–12 months in the Breede Valley sub-district, Western Cape province, South Africa
Objectives: To assess the appropriateness and understanding of the revised, draft South African Paediatric Food-Based Dietary Guidelines (SA-PFBDGs) amongst mothers/caregivers of children aged 0–12 months. Exposure to guidelines with similar messages, barriers and enablers to following of the guidelines were also assessed.
Design: Qualitative data were collected from 14 focus-group discussions (FGDs), conducted in isiXhosa (n = 5), English (n = 4) and Afrikaans (n = 5), totalling 73 mother/caregiver participants.
Setting: Worcester, Breede Valley sub-district, Western Cape province.
Subjects: The study population included mothers/caregivers who were older than 18 years.
Results: The majority of participants had previous exposure to variations of messages similar to the revised, draft SA-PFBDGs. Health platforms and practitioners (community health centres, antenatal classes, nurses, doctors) and social networks and platforms (family, magazines, radio) were mentioned as primary sources of information. Barriers to following the messages included: inconsistent messages (mainly communicated by healthcare workers), contrasting beliefs and cultural/family practices, limited physical and financial access to resources, poor social support structures and the psycho-social and physical demands of raising a child.
Conclusion: The revised, draft SA-PFBDGs for the age range 0–12 months have been field-tested in English, Afrikaans and isiXhosa. The messages in some of the revised, draft SA-PFBDGs were not understood by the participants, indicating that a degree of rewording should be considered to facilitate understanding of the guidelines by the public. The National Department of Health should consider the findings of this study, and use these standardised message/s to optimise infant and young child feeding
Probing Shadowed Nuclear Sea with Massive Gauge Bosons in the Future Heavy-Ion Collisions
The production of the massive bosons and could provide an
excellent tool to study cold nuclear matter effects and the modifications of
nuclear parton distribution functions (nPDFs) relative to parton distribution
functions (PDFs) of a free proton in high energy nuclear reactions at the LHC
as well as in heavy-ion collisions (HIC) with much higher center-of mass
energies available in the future colliders. In this paper we calculate the
rapidity and transverse momentum distributions of the vector boson and their
nuclear modification factors in p+Pb collisions at TeV and in
Pb+Pb collisions at TeV in the framework of perturbative QCD
by utilizing three parametrization sets of nPDFs: EPS09, DSSZ and nCTEQ. It is
found that in heavy-ion collisions at such high colliding energies, both the
rapidity distribution and the transverse momentum spectrum of vector bosons are
considerably suppressed in wide kinematic regions with respect to p+p reactions
due to large nuclear shadowing effect. We demonstrate that in the massive
vector boson productions processes with sea quarks in the initial-state may
give more contributions than those with valence quarks in the initial-state,
therefore in future heavy-ion collisions the isospin effect is less pronounced
and the charge asymmetry of W boson will be reduced significantly as compared
to that at the LHC. Large difference between results with nCTEQ and results
with EPS09 and DSSZ is observed in nuclear modifications of both rapidity and
distributions of and in the future HIC.Comment: 13 pages, 21 figures, version accepted for publication in Eur. Phys.
J.
FMRI resting slow fluctuations correlate with the activity of fast cortico-cortical physiological connections
Recording of slow spontaneous fluctuations at rest using functional magnetic resonance imaging (fMRI) allows distinct long-range cortical networks to be identified. The neuronal basis of connectivity as assessed by resting-state fMRI still needs to be fully clarified, considering that these signals are an indirect measure of neuronal activity, reflecting slow local variations in de-oxyhaemoglobin concentration. Here, we combined fMRI with multifocal transcranial magnetic stimulation (TMS), a technique that allows the investigation of the causal neurophysiological interactions occurring in specific cortico-cortical connections. We investigated whether the physiological properties of parieto-frontal circuits mapped with short-latency multifocal TMS at rest may have some relationship with the resting-state fMRI measures of specific resting-state functional networks (RSNs). Results showed that the activity of fast cortico-cortical physiological interactions occurring in the millisecond range correlated selectively with the coupling of fMRI slow oscillations within the same cortical areas that form part of the dorsal attention network, i.e., the attention system believed to be involved in reorientation of attention. We conclude that resting-state fMRI ongoing slow fluctuations likely reflect the interaction of underlying physiological cortico-cortical connections
- …