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Abstract This paper mainly considers vibration sup-

pression and angle tracking of a fire-rescue ladder sys-

tem. The dynamical model is regarded as a segmented

Euler-Bernoulli beam with gravity and tip mass, de-

scribed by a set of motion equations and boundary con-

ditions. Based on the nonlinear Euler-Bernoulli beam

model, two active boundary controllers are proposed

to achieve the control objectives. The elastic deflec-

tion and the angular error in the closed-loop system

are proven to converge exponentially to a small neigh-

borhood of zero. Numerical simulations based on finite

difference method verify the effectiveness and the as-

cendancy of active boundary controllers.

Keywords Vibration Suppression · Angle Tracking ·
Active Boundary Control · Nonuniform Euler-Bernoulli

Beam · Distributed Parameter System

1 Introduction

Modern fire-rescue ladders are becoming more and more

lightweight for increasing outreach and improving oper-

ational velocity. For example the ladder shown in Fig. 1

is over 53 meters long and weighs over 4800 kilogram-

s. The cage that is installed on the top of the ladder
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weighs over 50 kilograms, and it can take on board

up to 225 kilograms of load[32]. Indeed, the flexible

fire-rescue ladder is a kind of large-scale flexible ma-

nipulator that should be considered as an example of

distributed parameter systems (DPS). As a result of us-

ing light material, the stiffness of the fire-rescue ladder

decreases and the ladder becomes more susceptible to

vibration problem caused by wind, motion and so on.
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Fig. 1 A fire-rescue ladder.

The problems of vibration suppression and target

tracking have been considered in many DPS, e.g. wave

equation systems[12], [23], heat equation systems[21],

[37], string systems[28], beam systems[22], [38], [11], [9],

and so on. The stabilization problem of a one-dimensional

wave equation is considered in [23] and a controller

together with an observer is designed using the back-

stepping method. The stabilization of a system that
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is described by a heat equation is considered in [37]

and a boundary control law is advocated. By using

a Schrödinger equation, the closed-loop heat equation

system is proven to have exponential stability with the

Riesz basis property. In [40], a boundary control strate-

gy is proposed to reduce the vibration of string systems

with input backlash. A crane with varying cable length

is considered in [36], and a tracking method is advocate.

In [9], a force control strategy is used for a one-link flex-

ible arm that is modeled by a Timoshenko beam. Com-

paring with the Timoshenko beam model which con-

siders both bending and shear deformations of a beam

[4], the Euler-Bernoulli beam model is easier, just con-

sidering bending deformations [6]. In applications, the

Timoshenkon beam is suitable for describing short rods

or thick plates [2]; the Euler-Bernoulli beam is suitable

for describing long and thin rods or thin plates [11]. A

class of linear cascaded system that composed by linear

time-invariant systems and Euler-Bernoulli beam sys-

tems is considered in [38], and a feedback controller is

designed to achieve the exponential stability. In [22],

[16], boundary controllers or adaptive boundary con-

trollers are used to suppress vibration of different Euler-

Bernoulli beams. Boundary control is economical and

practical because it just uses several sensors and actua-

tors on two ends of a controlled plant [24], and bound-

ary control has wide application, such as marine riser

systems [7], [43], robot arms [8], crane systems [20], [17],

flapping wing micro aerial vehicles [15], spacecraft sys-

tems [26], string systems [41], [42] and aerial refueling

hose systems [27]. Therefore, boundary control could be

used in fire-rescue ladders.

In reviewing the study of fire-rescue ladders, the

models have developed from rigid beam to flexible beam

for the purpose of improving accuracy, and the con-

trol strategies have made corresponding changes. T-

wo 30-metre fire-rescue ladders are modeled as rigid

beams in [34] and [25], and the control strategies for

trajectory tracking are based on a decentralized ap-

proach. However, the rigid models ignore some infinite-

dimensional characteristics, and cannot reach a good

simulation of oscillation, especially high-frequency os-

cillation because of the disregard [32]. Because of the

fact that the ratio of the length of the ladder to the

minimum gyration radius of the cross section is rela-

tively large, the ladder should be modeled as a Euler-

Bernoulli beam. In [45], authors use a piecewise con-

tinuous Euler-Bernoulli beam to establish a model for

a 53-metre ladder. Comparing homogenized model [1],

the piecewise continuous beam model is more suitable

for the fire-rescue ladders where the upper sections have

smaller cross-sections than the lower sections. But in

[45], the controller designed to adjust system modes and

to damp vibration is based on a decentralized Euler-

Bernoulli beam model. This decentralized approach al-

so lets the ladder system loss some infinite-dimensional

characteristics. In this paper, a set of boundary con-

trol laws will be designed based on the flexible Euler-

Bernoulli beam model directly rather than a decentral-

ized Euler-Bernoulli beam model.

Overall, this paper makes contributions to the study

of fire-rescue ladders and the expansion of boundary

control’s applications. The main contribution is that

the boundary control strategy is proposed directly based

on the partial differential equations model. This ap-

proach of control designing avoids the loss of the infor-

mation of the PDE model. Meanwhile, the closed-loop

system is uniform ultimate bounded in theory and nu-

merical simulations verify the effectiveness of the bound-

ary controllers.

2 Problem Formulation

As a thin plate, the fire-rescue ladder shown in Fig. 1

is modeled as an Euler-Bernoulli beam (Fig. 2). Differ-

ent segments are not shown in Fig. 2. L denotes the

length after extension. θ(t) denotes the flexible angu-

lar position. w(z, t) is vibration deflection at the posi-

tion z for time t. In addition, we mark (·)′ = ∂(·)/∂z,
(·)′′ = ∂2(·)/∂z2, (·)′′′ = ∂3(·)/∂z3, (·)′′′′ = ∂4(·)/∂z4,
˙(·) = ∂(·)/∂t and (̈·) = ∂2(·)/∂t2.

2.1 Dynamical Model
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Fig. 2 Dynamical model of the fire-rescue ladder.

The dynamical model of the ladder is divided into

S segments. ℵn means the nth segment, where n =

1, 2, · · · , S, and zn−1 and zn are the lower and up-

per ends of ℵn, respectively. Further, we have z0 = 0,

zS = L, ℵn = [zn−1, zn). Because every segment on the

ladder is considered to be a uniform one, we then have
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ρ(z) = ρn and EI(z) = EIn where z ∈ ℵn, ρn and

EIn denote the linear density and the bending stiff-

ness of ℵn, respectively. Since the ladder tapers from

ℵ1 to ℵS , we then derive ρS ≤ ρn+1 < ρn ≤ ρ1 and

EIS ≤ EIn+1 < EIn ≤ EI1.

Moreover, this paper mainly considers that the de-

formation of the ladder is along the central axis. The

connection between the central axes of two adjacen-

t sections is smooth. Therefore, at the boundary of a

segment zn, the deflection of the ladder is continuous,

namely w(z−n , t) = w(z+n , t) and the slope of the deflec-

tion is also continuous, namely w′(z−n , t) = w′(z+n , t). z
−
n

and z+n belong to segments ℵn and ℵn+1, respectively,

and z−n = zn = z+n . Defining P (z, t) = w(z, t) + zθ(t),

we further have P (z−n , t) = P (z+n , t) and P ′(z−n , t) =

P ′(z+n , t).

The kinetic energy and the potential energy are sim-

ilar with [32], and the virtual work δWnc done by the

non-conservative force is consist of the virtual work

done by damping and the boundary controllers.

δWnc(t) = M(t)δθ(t) +N(t)δP (L, t)

−
S∑
n=1

∫ z−n

z+n−1

cṖ (z, t)δP (z, t)dz, (1)

where c describes the damping coefficient of the ladder.

According to Hamilton’s principle and using the con-

ditions P (z−n , t) = P (z+n , t) and P ′(z−n , t) = P ′(z+n , t),

the dynamical model of the ladder can be obtained. E-

quations of motion are

ρn[P̈ (z, t) + g cos θ(t)] + EInP
′′′′(z, t) + cṖ (z, t) = 0,

(2)

−
S∑
n=1

gρn

∫ z−n

z+n−1

w(z, t) sin θ(t)dz + JAθ̈(t)

− EI1P ′′(0, t)−mcgw(L, t) sin θ(t) = M(t),(3)

where z ∈ ℵn, and JA describes the moment of inertia

of the rotary actuator. Boundary conditions are

P (0, t) = 0, (4)

P ′(0, t) = θ(t), (5)

P ′′(L, t) = 0, (6)

EInP
′′(z−n , t) = EIn+1P

′′(z+n , t), (7)

EInP
′′′(z−n , t) = EIn+1P

′′′(z+n , t), (8)

mc[P̈ (L, t) + gcosθ(t)]− EISP ′′′(L, t) = N(t). (9)

Remark 1 Using the definition of P (z, t), P (z, t) = w(z, t)

+zθ(t), we have P (0, t) = w(0, t), w′′(z, t) = P ′′(z, t)

and w′′′(z, t) = P ′′′(z, t). Meanwhile, on the basis of

boundary conditions, we have w(0, t) = 0, w′(0, t) =

P ′(0, t)− θ(t) = 0 and w′′(L, t) = 0.

2.2 Preliminaries

This subsection mainly provides some frequently used

inequations for the following contents. Combining the

Remark 1 and the Young’s inequality [33], we have

S∑
n=1

∫ z−n

z+n−1

[w(z, t)]2dz ≤ 2L

S∑
n=1

∫ z−n

z+n−1

[w′(z, t)]2dz, (10)

S∑
n=1

∫ z−n

z+n−1

[w′(z, t)]2dz ≤ 2L

S∑
n=1

∫ z−n

z+n−1

[w′′(z, t)]2dz, (11)

For any point zl along the ladder, we further have

w(zl, t)
2 ≤

S∑
n=1

∫ z−n

z+n−1

4[w′(z, t)]2dz. (12)

3 Control Design

The control objectives in this paper include suppressing

the vibration to a small scale and tracking the target

angle.

3.1 Boundary Control Strategy

By using Lyapunov’s direct method, two boundary con-

trollers are presented as follows.

M(t) = −EI1P ′′(0, t)−mcgw(L, t) sin θ(t)− JAθ̇(t)

−k + 2kθ
2γ

[θ̇(t) + θ(t)− θd] (13)

N(t) = mcg cos θ(t)− mc(α− ξL)

β
ẇ(L, t)− kuua(t)

(14)

where ua(t) = 1
α Ṗ (L, t)+ (α−ξL)

βα w(L, t), θd is the target

angle while k, ku, kθ, α, β and ξ are positive constants.

Fig. 3 illustrates the work principle of the close-loop

system.
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Fig. 3 Block diagram about the process of the closed-loop
system.



4 Jiali Feng et al.

Remark 2 The controllers designed in this paper need

minimum three sensors: a laser displacement sensor,

an inclinometer and an encoder can measure w(L, t),

w′(0, t) and θ(t), respectively. Then ẇ(L, t), w′′(0, t)

and θ̇(t) can be calculated by one-order difference of

w(L, t), w′(0, t) and θ(t), respectively.

3.2 Stability Analysis

For the fire-rescue ladder system described in (2)-(9),

the boundary controllers (13) and (14) are designed to

damp the vibration and track the target angle. By de-

signing appropriate Lyapunov function candidate, we

can prove the efficiency of the controllers [29]. The Lya-

punov function candidate in this paper is as follows.

V (t) = VI(t) + VII(t) + VIII(t) (15)

where

VI(t) =
β

2

S∑
n=1

∫ z−n

z+n−1

ρn[Ṗ (z, t)]2dz

+
β

2

S∑
n=1

∫ z−n

z+n−1

EIn[P ′′(z, t)]2dz (16)

VII(t) =
γJA

2
[θ̇(t) + θe(t)]

2 +
k

2
[θe(t)]

2 +
βα2mc

2
ua(t)2

(17)

VIII(t) = α

S∑
n=1

∫ z−n

z+n−1

ρnw(z, t)Ṗ (z, t)dz

+ζ

S∑
n=1

∫ z−n

z+n−1

ρn(L− z)w′(z, t)Ṗ (z, t)dz

−ξ
S∑
n=1

∫ z−n

z+n−1

ρnzw
′(z, t)Ṗ (z, t)dz (18)

where γ and ζ are positive constants and θe(t) = θ(t)−
θd.

The Lyapunov function candidate and the closed-

loop ladder system can be analysed through the follow-

ing three steps.

Step 1: The Lyapunov function candidate defined by

(15) has upper and lower boundaries, namely, 0 ≤ λ1
×(VI(t) + VII(t))≤V (t)≤λ2(VI(t) + VII(t)), where λ1
and λ2 are positive constants.

Proof : See Appendix A.

Step 2: The first derivative of Lyapunov function can-

didate given by (15) satisfies V̇ (t) < −λV (t) + ε, where

λ is a positive constant.

Proof : See Appendix B.

Step 3: Following consequences exist in the fire-rescue

ladder system:

a) The flexible ladder’s elastic deflection w(z, t) can s-

tay in the compact set Ω1w and eventually converge to

the compact set Ω2w.

Ω1w := {w(z, t)∈R| |w(z, t)|≤D1},
Ω2w := {w(z, t)∈R| lim

t→∞
|w(z, t)|≤D2},

∀(z, t) ∈ [z+n−1, z
−
n )× [0,∞), n ∈ {1, 2, ..., S},

where D1 =
√

16L
λ1βEIn

[V (0) + ε
λ ] and

D2 =
√

16Lε
λλ1βEIn

.

b) The flexible ladder’s angular error θe(t) = θ(t) − θd
can stay in the compact setΩ1θ and eventually converge

to the compact set Ω2θ.

Ω1θ := {θe(t)∈R| |θe(t)|≤D3},
Ω2θ := {θe(t)∈R| lim

t→∞
|θe(t)|≤D4}, ∀t ∈ [0,∞),

where D3 =
√

2
kλ1

[V (0) + ε
λ ] and D4 =

√
2ε
kλλ1

.

Proof : See Appendix C.

Therefore, for the system described by (2) to (3)

and boundary condition (4) to (9), under the control

laws (13) and (14), we can conclude that the closed-

loop ladder system is ultimately uniformly bounded.

Remark 3 V (t) can converge to constant ε
λ . Combin-

ing the Step 1, we have VI(t)+VII(t) can also converge

to constant ε
λλ1

. Since VI(t) and VII(t) both can be de-

scribed as a sum of squares (16)-(17), namely, VI(t) ≥ 0

and VII(t) ≥ 0, VI(t) and VII(t) are also convergent.

And every square term in VI(t) and VII(t) is convergent,

in other words, Ṗ (z, t), P ′′(z, t) and ua(t) are conver-

gent. Besides, using Step 3, we further have that the

potential energy and the kinetic energy are convergent.

4 Simulation

To illustrate the flexible fire-rescue ladder system, we

set the following initial conditions[45]: w(z, 0) = − 0.05
L3 z

3−
0.15
L2 z

2 and θ(0) = 68◦. And the physical parameter-

s are L = 53 m, mc = 275 kg, JA = 900 kg·m2,

S = 2, c = 0.5 N·s/m, ρn = [160 63] kg/m and

EIn = [10.578 5.354] × 107 N/m. The target angle

θd is 73◦.

Remark 4 In the numerical simulation, this paper gives

some initial conditions and values of physical parame-

ters. Considering the influence of gravity and the cage,

the initial value elastic deflection is negative. Because

the fire-rescue ladder is always on an extension state

and has load in cage in practical application, the lad-

der’s length L in simulations is 53 m; the initial angle

of the ladder is 68◦ and the weight of the cage mc is

275 kg.
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This section mainly discusses the moving states of

the flexible ladder under three different control states:

without control, PD control and boundary control. When

the flexible ladder moves without control, namely, M(t)

and N(t) are equal to zero. Fig. 4 shows the moving sit-

uation when the fire-rescue ladder has no control. The

ladder moves in an arc because of gravity and damping

force. Fig. 5 shows the angle of the fire-rescue ladder

without control. From Fig. 5, we can find that the lad-

der has no trend that the ladder approaches the target

position. Fig. 6 and Fig. 12 show the vibration offset

of the whole ladder without control and the top of the

ladder with three different control states, respectively.

From Fig. 6 and the blue dotted line in Fig. 12, we can

find that the vibration offset is divergent. With intent

to ensure the fire rescue operation go with swing, the

flexible ladder has to work under control.
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Fig. 4 The overall state of the fire-rescue ladder without
control.
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Fig. 5 The angle of the fire-rescue ladder without control.

20

15-3
0

Time [s]

-2

1010

-1

20

Z [m]

0

w
(z

,t)
 [m

]

530

1

40

2

50 0

3

60

Fig. 6 The vibration offset of the entire ladder without con-
trol.

As the comparison, proportional differential (PD)

controllers are introduced into the fire-rescue ladder

model. The PD controllers are

MPD(t) = −kpθ[θ(t)− θd]− kdθ θ̇(t), (19)

NPD(t) = −kpww(L, t)− kdwẇ(L, t), (20)

where the control parameters are kpθ = 5.7×107, kdθ =

8.0 × 106, kpw = 1.0 × 105 and kdw = 6 × 103. Fig. 7

demonstrates the moving situation of the ladder under

PD control. Fig. 8 demonstrates the vibration offset of

the entire ladder with PD control. From Fig. 8, we can

find that the ladder’s elastic deflection converges con-

stantly to a stable state and the range of elastic deflec-

tion is 4.2m. The broken green lines in Fig. 11 and Fig.

12 show that the closed-loop ladder system can attain

stabilization within 13s. The angle and the vibration

offset can converge within 4s and 13s, respectively. The

overshoots of the angle and the vibration offset are 1.4◦

and 2.1m (Fig. 8), respectively. The overshoot of the vi-

bration offset at the top of the ladder w(L, t) is 0.8m.

Since the flexible ladder works at a relatively large an-

gle, big overshoots may bring about that the ladder

exceeds the mechanical limit and even suffers damage.

For the engineers’ convenience, the terms sin θ(t)

and cos θ(t) in the controllers (13)-(14) can use Taylor

series to approximate. After Taylor series approxima-

tion at 60◦, the controllers (13)-(14) can be turned into

MT (t) = −EI1P ′′(0, t)−mcgw(L, t)
(√3

2
+
θ(t)

2

−
√

3θ(t)2

4
− θ(t)3

12

)
− JAθ̇(t)

−k + 2kθ
2γ

[θ̇(t) + θ(t)− θd], (21)
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Fig. 7 The overall state of the fire-rescue ladder with PD
control.
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Fig. 8 The vibration offset of the entire ladder with PD
control.

NT (t) = mcg
(

0.5−
√

3θ(t)

2
− 0.25θ(t)2 +

√
3θ(t)3

12

)
−mc(α− ξL)

β
ẇ(L, t)− kuua(t). (22)

Fig. 9-Fig. 12 show the control effect of the ladder with

the boundary controllers after Taylor series approxi-

mating (21)-(22). The control parameters of the bound-

ary control laws are k+2kθ
2γ = 8.02× 106, α = 9, β = 1,

ξ = 0.45 and ku = 12700. Fig. 9 demonstrates the mov-

ing situation of the ladder under boundary control. Fig.

10 demonstrates the vibration offset of the entire lad-

der with boundary control. From Fig. 10, we can find

that the ladder’s elastic deflection converges constantly

to a stable state and the range of elastic deflection is

1.8m. The red line in Fig. 11 and Fig. 12 show that the

closed-loop ladder system can attain stabilization with-

in 4s. The angle and the vibration offset can converge

within 2s and 4s, respectively. The overshoots of the

angle and of the vibration offset are 0.2◦ and 1.4m, re-

spectively. The overshoot of the vibration offset at the

top of the ladder w(L, t) is 0.2m.
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Fig. 9 The overall state of the fire-rescue ladder with bound-
ary control.
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Fig. 10 The vibration offset of the entire fire-rescue ladder
with boundary control.

Comparing with the simulation without control, the

boundary control laws proposed in this paper have ef-

fectiveness, i.e., the boundary control laws can sup-

press the vibration and track the target angle. More-

over, comparing with the simulation with PD control,

the boundary control laws have ascendancy, i.e., the

boundary control laws spend less time on converging

to a small scale and have smaller range of elastic de-

flection than the PD control method. Fig. 13 shows the

control input of the boundary control laws. Combining

[45] and Fig. 13, we can find that an actual fire-rescue
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ladder can supply enough power to achieve the control

objectives.

5 Conclusion

This paper uses a segmented Euler-Bernoulli beam with

gravity, top mass and external damping to establish an

accurate model of a flexible fire-rescue ladder system.

Based upon the dynamical model, two boundary con-

trollers are proposed to realise the control goals that the

vibration of the closed-loop ladder system is suppressed

to a small scale and the angle is able to track the tar-

get. By designing a Lyapunov function, the closed-loop

ladder system is uniformly ultimately bounded and the

elastic deflection w(z, t) remains in a small compact set.

Comparing with PD control method, the boundary con-

trol strategy can converge to a smaller scale of elastic
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Fig. 13 The control input of the boundary controllers M(t)
and N(t).

deflection and track the target angle in less time. Future

avenues of research include using adaptive control [30],

[44], [19], optimize control [39], neural network control

[13], [35], [10], learning-based control methods [31], [14]

for flexible fire-rescue ladders, and validating the simu-

lation results to provide more accurate simulations [5],

[3], and further giving experiments [18].

Compliance with ethical standards

Conflict of interest The authors declare that we have

no conflict of interest.

Acknowledgements The authors would like to thank the
useful comments and constructive suggestions from the hand-
ing editor and anonymous reviewers. This work was sup-
ported in part by the National Key Research and Develop-
ment Program of China under Grant 2019YFB1703600, the
National Natural Science Foundation of China under Grant
61873297, Joint Funds of Equipment Pre-Research and Min-
istry of Education of China under Grant 6141A02033339, the
Fundamental Research Funds for the China Central Universi-
ties under Grant FRF-TP-19-001B2, the China Postdoctoral
Science Foundation under Grant 2019TQ0029, the Scientific
and Technological Innovation Foundation of Shunde Gradu-
ate School of University of Science and Technology Beijing
under Grant BK19BE015 and this work was supported by
Beijing Top Discipline for Artificial Intelligent Science and
Engineering, University of Science and Technology Beijing.

References

1. Andrianov, I.V., Danishevs’ kyy, V.V., Topol, H., We-
ichert, D.: Homogenization of a 1D nonlinear dynam-
ical problem for periodic composites. ZAMM-Journal
of Applied Mathematics and Mechanics/Zeitschrift für
Angewandte Mathematik und Mechanik 91(6), 523–534
(2011)



8 Jiali Feng et al.

2. Awrejcewicz, J., Krysko, A., Pavlov, S., Zhigalov, M.,
Krysko, V.: Chaotic dynamics of size dependent Timo-
shenko beams with functionally graded properties along
their thickness. Mechanical Systems & Signal Processing
93, 415–430

3. Awrejcewicz, J., Krysko, A.V., Mrozowski, J., Saltyko-
va, O.A., Zhigalov, M.V.: Analysis of regular and chaotic
dynamics of the Euler-Bernoulli beams using finite differ-
ence and finite element methods. Acta Mechanica Sinica
27(1), 36–43

4. Awrejcewicz, J., Krysko, A.V., Soldatov, V., Krysko,
V.A.: Analysis of the nonlinear dynamics of the Timo-
shenko flexible beams using wavelets. Journal of Compu-
tational & Nonlinear Dynamics 7(1), 011005

5. Awrejcewicz, J., Krysko, A.V., Zagniboroda, N.A., Do-
briyan, V.V., Krysko, V.A.: On the general theory of
chaotic dynamics of flexible curvilinear Euler-Bernoulli
beams. Nonlinear Dynamics 79(1), 11–29

6. Awrejcewicz, J., Saltykova, O.A., Zhigalov, M.V., Hage-
dorn, P.: Analysis of non-linear vibrations of single-
layered Euler-Bernoulli beams using wavelets. Interna-
tional Journal of Aerospace and Lightweight Structures
(IJALS) 1(2), 203–219

7. Do, K.D.: Stochastic boundary control design for
extensible marine risers in three dimensional s-
pace. Automatica 77, 184–197 (2017). DOI
10.1016/j.automatica.2016.11.032

8. Endo, T., Matsuno, F., Jia, Y.: Boundary cooperative
control by flexible Timoshenko arms. Automatica 81,
377–389 (2017). DOI 10.1016/j.automatica.2017.04.017

9. Endo, T., Sasaki, M., Matsuno, F., Jia, Y.: Contact-force
control of a flexible timoshenko arm in rigid/soft environ-
ment. IEEE Transactions on Automatic Control 62(5),
2546–2553 (2017). DOI 10.1109/TAC.2016.2599434

10. Gao, H., He, W., Zhou, C., Sun, C.: Neural network con-
trol of a two-link flexible robotic manipulator using as-
sumed mode method. IEEE Transactions on Industrial
Informatics PP(99), 1–1 (2018)

11. Guo, B.Z., Wang, J., Yang, K.: Dynamic stabi-
lization of an Euler-Bernoulli beam under bound-
ary control and non-collocated observation. System-
s & Control Letters 57(9), 740–749 (2008). DOI
10.1016/j.sysconle.2008.02.004

12. Guo, W., Guo, B.Z.: Performance output tracking for a
wave equation subject to unmatched general boundary
harmonic disturbance. Automatica 68, 194–202 (2016).
DOI 10.1016/j.automatica.2016.01.041

13. He, W., Dong, Y.: Adaptive fuzzy neural network control
for a constrained robot using impedance learning. IEEE
Transactions on Neural Networks & Learning Systems
29(4), 1174–1186 (2018)

14. He, W., Gao, H., Zhou, C., Yang, C., Li, Z.: Reinforce-
ment learning control of a flexible manipulator: An ex-
perimental investigation. IEEE Transactions on Systems,
Man, and Cybernetics: Systems (in press, 2020). DOI
10.1109/TSMC.2020.2975232

15. He, W., Meng, T., He, X., Sun, C.: Iterative learning
control for a flapping wing micro aerial vehicle under dis-
tributed disturbances. IEEE Transactions on Cybernetics
49(4), 1524–1535 (2019)

16. He, W., Meng, T., Huang, D., Li, X.: Adaptive boundary
iterative learning control for an Euler-Bernoulli beam sys-
tem with input constraint. IEEE Transactions on Neural
Networks & Learning Systems 29(5), 1539–1549 (2018)

17. He, W., Ouyang, Y., Hong, J.: Vibration control of a flex-
ible robotic manipulator in the presence of input dead-
zone. IEEE Transactions on Industrial Informatics 13(1),
48–59 (2017)

18. He, W., Xue, C., Yu, X., Li, Z., Yang, C.: Admittance-
based controller design for physical human-robot inter-
action in the constrained task space. IEEE Transactions
on Automation Science and Engineering (2020). DOI
10.1109/TASE.2020.2983225

19. He, X., He, W., Liu, Y., Wang, Y., Li, G., Wang,
Y.: Robust adaptive control of an offshore ocean ther-
mal energy conversion system. IEEE Transactions on
Systems Man & Cybernetics Systems (2018). DOI
10.1109/TSMC.2018.2870999

20. He, X., He, W., Shi, J., Sun, C.: Boundary vibration con-
trol of variable length crane systems in two dimensional
space with output constraints. IEEE/ASME Transac-
tions on Mechatronics 22(5), 1952–1962 (2017). DOI
10.1109/TMECH.2017.2721553

21. Huang, D., Xu, J.X., Li, X., Xu, C., Yu, M.: D-type antic-
ipatory iterative learning control for a class of inhomo-
geneous heat equations. Automatica 49(8), 2397–2408
(2013). DOI 10.1016/j.automatica.2013.05.005

22. Ji, N., Liu, Z., Liu, J., He, W.: Vibration control for a
nonlinear three-dimensional Euler-Bernoulli beam under
input magnitude and rate constraints. Nonlinear Dy-
namics 91(4), 2551–2570 (2018). DOI 10.1007/s11071-
017-4031-y

23. Krstic, M., Guo, B.Z., Balogh, A., Smyshlyaev, A.:
Output–feedback stabilization of an unstable wave e-
quation. Automatica 44(1), 63–74 (2008). DOI
10.1016/j.automatica.2007.05.012

24. Krstic, M., Smyshlyaev, A.: Boundary control of PDEs:
A course on backstepping designs, vol. 16. Siam (2008)

25. Lambeck, S., Sawodny, O., Arnold, E.: Trajectory track-
ing control for a new generation of fire rescue turntable
ladders. In: 2006 IEEE Conference on Robotics, Au-
tomation and Mechatronics, pp. 1–6 (Bangkok, Thailand,
2006)

26. Liu, Y., Fu, Y., He, W., Hui, Q.: Modeling and observer-
based vibration control of a flexible spacecraft with exter-
nal disturbances. IEEE Transactions on Industrial Elec-
tronics 66(11), 8648–8658 (2019)

27. Liu, Z., Liu, J., He, W.: Modeling and vibration control
of a flexible aerial refueling hose with variable lengths
and input constraint. Automatica 77, 302–310 (2017)

28. Liu, Z., Zhao, Z., Ahn, C.K.: Boundary constrained con-
trol of flexible string systems subject to disturbances.
IEEE Transactions on Circuits and Systems II: Express
Briefs 67(1), 112–116 (2020)

29. Luo, Z.H., Guo, B.Z., Morgül, O.: Stability and Stabiliza-
tion of Infinite Dimensional Systems with Applications.
Springer London (1999)

30. Mu, C., Ni, Z., Sun, C., He, H.: Air-breathing hypersonic
vehicle tracking control based on adaptive dynamic pro-
gramming. IEEE Transactions on Neural Networks and
Learning Systems 28(3), 584–598 (2016)

31. Mu, C., Zhang, Y.: Learning-based robust tracking con-
trol of quadrotor with time-varying and coupling uncer-
tainties. IEEE Transactions on Neural Networks and
Learning Systems 31(1), 259–273 (2020)

32. Pertsch, A., Zimmert, N., Sawodny, O.: Modeling a
fire-rescue turntable ladder as piecewise Euler-Bernoulli
beam with a tip mass. In: Proceedings of the 48th IEEE
Conference on Decision and Control, 2009 Held Joint-
ly with the 2009 28th Chinese Control Conference (CD-
C/CCC 2009), pp. 7321–7326 (Shanghai, China, 2009).
DOI 10.1109/CDC.2009.5399815

33. Rahn, C.D.: Mechatronic control of distributed noise and
vibration. Automatica 39(9), 1664–1666 (2003)



Vibration Suppression and Angle Tracking of a Fire-Rescue Ladder 9

34. Sawodny, O., Lambeck, S., Hildebrandt, A.: Trajectory
generation for the trajectory tracking control of a fire
rescue turntable ladder. In: International Workshop on
Robot Motion and Control, pp. 411–416 (Poland, 2002).
DOI 10.1109/ROMOCO.2002.1177141

35. Sun, C., He, W., Hong, J.: Neural network control of
a flexible robotic manipulator using the lumped spring-
mass model. IEEE Transactions on Systems Man & Cy-
bernetics Systems 47(8), 1863–1874 (2017)

36. Sun, N., Fang, Y.: Nonlinear tracking control of underac-
tuated cranes with load transferring and lowering: Theo-
ry and experimentation . Automatica 50(9), 2350–2357
(2014)

37. Wang, J.M., Ren, B., Krstic, M.: Stabilization and
Gevrey regularity of a Schrödinger equation in bound-
ary feedback with a heat equation. IEEE Transaction-
s on Automatic Control 57(1), 179–185 (2012). DOI
10.1109/TAC.2011.2164299

38. Wu, H.N., Wang, J.W.: Static output feedback control via
PDE boundary and ODE measurements in linear cascad-
ed ODE–beam systems. Automatica 50(11), 2787–2798
(2014). DOI 10.1016/j.automatica.2014.09.006

39. Wu, X., Xu, L., Wang, J., Yang, D., Li, F., Li, X.: A
prognostic-based dynamic optimization strategy for a de-
graded solid oxide fuel cell. Sustainable Energy Technolo-
gies and Assessments 39, 100682 (2020)

40. Yang, K.J., Hong, K.S., Matsuno, F.: Robust adaptive
boundary control of an axially moving string under a s-
patiotemporally varying tension. Journal of Sound & Vi-
bration 273(4), 1007–1029 (2004). DOI 10.1016/S0022-
460X(03)00519-4

41. Yang, K.J., Hong, K.S., Matsuno, F.: Robust boundary
control of an axially moving string by using a pr trans-
fer function. IEEE Transactions on Automatic Control
50(12), 2053–2058 (2005)

42. Zhao, Z., Ahn, C.K., Li, H.X.: Boundary anti-disturbance
control of a spatially nonlinear flexible string system.
IEEE Transactions on Industrial Electronics 67(6), 4846–
4856 (2020)

43. Zhao, Z., Lin, S., Zhu, D., Wen, G.: Vibration control
of a riser-vessel system subject to input backlash and
extraneous disturbances. IEEE Transactions on Circuits
and Systems II: Express Briefs 67(3), 516–520 (2020)

44. Zhou, Q., Li, H., Wang, L., Lu, R.: Prescribed per-
formance observer-based adaptive fuzzy control for
nonstrict-feedback stochastic nonlinear systems. IEEE
Transactions on Systems, Man, and Cybernetics: Systems
48(10), 1747–1758 (2017)

45. Zimmert, N., Pertsch, A., Sawodny, O.: 2-DOF control
of a fire-rescue turntable ladder. IEEE Transactions on
Control Systems Technology 20(2), 438–452 (2012). DOI
10.1109/TCST.2011.2116021

Appendices

A. Proof of Step 1

Proof : Using the Young’s inequality and (10)-(12) to

VIII(t), we have

|VIII(t)| ≤ α

S∑
n=1

∫ z−n

z+n−1

ρn|w(z, t)||Ṗ (z, t)|dz

+ξ

S∑
n=1

∫ z−n

z+n−1

ρnz|w′(z, t)||Ṗ (z, t)|dz

+ζ

S∑
n=1

∫ z−n

z+n−1

ρn(L− z)|w′(z, t)||Ṗ (z, t)|dz

≤
S∑
n=1

∫ z−n

z+n−1

Lρmax[2Lαδ1 + (ζ + ξ)δ2]

×[w′′(z, t)]2dz +

S∑
n=1

∫ z−n

z+n−1

[ (ζ + ξ)ρn
2δ2

+
αρn
2δ1

]
[Ṗ (z, t)]2dz

≤ µ1V1(t), (A.1)

where δ1 and δ2 are positive constants, ρmax is the max-

imum value of ρn, n ∈ {1, 2, ..., S} and

µ1 = max
{ 2Lρmax[2Lαδ1 + (ζ + ξ)δ2]

βEImin
,

(ζ + ξ)

βδ2
+

α

βδ1

}
(A.2)

where EImin is the minimum value of EIn, n ∈ {1, 2,
..., S}. Therefore, we obtain

−µ1V1(t)≤V3(t)≤µ1V1(t) (A.3)

When µ1 satisfies 0 < µ1 < 1, we have

0 ≤ λ1(V1(t) + V2(t))≤V (t) ≤ λ2(VI(t) + VII(t)). (A.4)

where λ1 = 1− µ1 and λ2 = 1 + µ1.

B. Proof of Step 2

Proof : Taking the derivative of (15) with respect to

time, we have

V̇ (t) = V̇I(t) + V̇II(t) + V̇III(t). (B.1)

Using the motion equation (2), the first term of (B.1)

can be written as

V̇I(t) = −β
S∑
n=1

∫ z−n

z+n−1

ρngṖ (z, t) cos θ(t)dz

−βEISṖ (L, t)P ′′′(L, t)− βEI1P ′′(0, t)θ̇(t)

−β
S∑
n=1

∫ z−n

z+n−1

c[Ṗ (z, t)]2dz. (B.2)

We define

B1(t) = −β
S∑
n=1

∫ z−n

z+n−1

ρngṖ (z, t) cos θ(t)dz, (B.3)

B2(t) = −βEI1P ′′(0, t)θ̇(t). (B.4)
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Using the Young’s inequality, we have

|B1| ≤ β

S∑
n=1

∫ z−n

z+n−1

ρng
δ3
2

[Ṗ (z, t)]2dz

+β

S∑
n=1

∫ z−n

z+n−1

ρng
1

2δ3
[cos θ(t)]2dz

≤ β

S∑
n=1

∫ z−n

z+n−1

ρng
δ3
2

[Ṗ (z, t)]2dz +
βgLρmax

2δ3
(B.5)

|B2| ≤ βEI1
δ4
2

[P ′′(0, t)]2 + βEI1
1

2δ4
[θ̇(t)]2, (B.6)

where δ3 and δ4 are positive constants. As a result, we

obtain

V̇I(t) ≤ β

S∑
n=1

∫ z−n

z+n−1

ρng
δ3
2

[Ṗ (z, t)]2dz + βEI1
1

2δ4
[θ̇]2

+βEI1
δ4
2

[P ′′(0, t)]2 − β
S∑
n=1

∫ z−n

z+n−1

c[Ṗ (z, t)]2dz

−βEISṖ (L, t)P ′′′(L, t) +
βgLρmax

2δ3
. (B.7)

Using the motion equation (3), the second term of

(B.1) can be written as

V̇II(t) = γ

S∑
n=1

∫ z−n

z+n−1

ρngw(z, t)[θ̇(t) + θe(t)] sin θ(t)dz

+γ[θ̇(t) + θe(t)][M(t) + EI1P
′′(0, t)

+mcgw(L, t) sin θ(t) + JAθ̇(t)]

+βα2mcua(t)u̇a(t) + kθe(t)θ̇(t). (B.8)

Using perfect square formula, we have

kθe(t)θ̇(t) =
k

2
[θe(t) + θ̇(t)]2 − k

2
[θe(t)]

2 − k

2
[θ̇(t)]2

(B.9)

Using the definition of ua(t) and the boundary condi-

tion (9), we have

βαmcua(t)u̇a(t) = βαmcua(t)[P̈ (L, t) +
α− ξL
β

ẇ(L, t)]

= βαua(t)[N(t) + EISP
′′′(L, t)

−mcg cos θ(t) +mc
α− ξL
β

ẇ(L, t)].(B.10)

Defining B3 = γ
∑S
n=1

∫ z−n
z+n−1

ρngw(z, t)[θ̇(t) + θe(t)]

× sin θ(t)dz and using the Young’s inequality and (10)-

(12), we have

|B3| ≤ γ

S∑
n=1

∫ z−n

z+n−1

ρng|w(z, t)||[θ̇(t) + θe(t)]|dz

≤ γ

S∑
n=1

∫ z−n

z+n−1

ρng
δ5
2

[w(z, t)]2dz

+γ

S∑
n=1

∫ z−n

z+n−1

ρng
1

2δ5
[θ̇(t) + θe(t)]

2dz

≤ γ

S∑
n=1

∫ z−n

z+n−1

2L2ρngδ5[w′′(z, t)]2dz

+
γgρmaxL

2δ5
[θ̇(t) + θe(t)]

2, (B.11)

where δ5 is positive constant. Substituting (B.9)-(B.11)

and the boundary control laws (13) and (14) to (B.8),

we further have

V̇II(t) ≤ γ

S∑
n=1

∫ z−n

z+n−1

2L2ρngδ5[w′′(z, t)]2dz − k

2
[θe(t)]

2

−k
2

[θ̇(t)]2 − ku[ua(t)]2 +
√
βua(t)EISP

′′′(L, t)

−
(
kθ −

γgρmaxL

2δ5

)
[θ̇(t) + θe(t)]

2. (B.12)

The third term of (B.1) can be written as

V̇III(t) = B4 +B5 +B6 +B7 +B8 +B9, (B.13)

where

B4 = α

S∑
n=1

∫ z−n

z+n−1

ρnẇ(z, t)Ṗ (z, t)dz

B5 = α

S∑
n=1

∫ z−n

z+n−1

ρnw(z, t)P̈ (z, t)dz

B6 = ζ

S∑
n=1

∫ z−n

z+n−1

ρn(L− z)ẇ′(z, t)Ṗ (z, t)dz

B7 = ζ
S∑
n=1

∫ z−n

z+n−1

ρn(L− z)w′(z, t)P̈ (z, t)dz

B8 = −ξ
S∑
n=1

∫ z−n

z+n−1

ρnzẇ
′(z, t)Ṗ (z, t)dz

B9 = −ξ
S∑
n=1

∫ z−n

z+n−1

ρnzw
′(z, t)P̈ (z, t)dz

Using the definition of P (z, t), B4 can be written as

B4 = α

S∑
n=1

∫ z−n

z+n−1

ρn[Ṗ (z, t)]2dz

−α
S∑
n=1

∫ z−n

z+n−1

ρnzṖ (z, t)θ̇(t)dz. (B.14)
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Using the Young’s inequality, the seconde term of B4

satisfies following inequality.

|α
S∑
n=1

∫ z−n

z+n−1

ρnzṖ (z, t)θ̇(t)dz|

≤
S∑
n=1

∫ z−n

z+n−1

δ6αρn
2

z[Ṗ (z, t)]2dz

+
α

2δ6

S∑
n=1

∫ z−n

z+n−1

ρnz[θ̇(t)]
2dz

≤
S∑
n=1

∫ z−n

z+n−1

δ6αρnL

2
[Ṗ (z, t)]2dz

αρmaxL
2

4δ6
[θ̇(t)]2, (B.15)

where δ6 is a positive constant. So that B4 satisfies

B4 ≤ α

S∑
n=1

∫ z−n

z+n−1

ρn(1 +
δ6L

2
)[Ṗ (z, t)]2dz

+
αρmaxL

2

4δ6
[θ̇(t)]2. (B.16)

Using the motion equation (2), B5 can be written as

B5 = −α
S∑
n=1

∫ z−n

z+n−1

ρngw(z, t) cos θ(t)dz − αEISw(L, t)

×P ′′′(L, t)− α
S∑
n=1

∫ z−n

z+n−1

EIn[w′′(z, t)]2dz

−αc
S∑
n=1

∫ z−n

z+n−1

w(z, t)Ṗ (z, t)dz (B.17)

Using the Young’s inequality, (10) and (11), the first

term of B5 satisfies following inequality.

|α
S∑
n=1

∫ z−n

z+n−1

ρngw(z, t) cos θ(t)dz|

≤ α

S∑
n=1

∫ z−n

z+n−1

ρng
δ7
2

[w(z, t)]2dz +
α

2δ7

S∑
n=1

∫ z−n

z+n−1

ρngdz

≤ 2L2δ7gα

S∑
n=1

∫ z−n

z+n−1

ρmax[w′′(z, t)]2dz

+
αρmaxLg

2δ7
, (B.18)

where δ7 is a positive constant. Using the Young’s in-

equality and (10), the forth term of B5 satisfies follow-

ing inequality.

|αc
S∑
n=1

∫ z−n

z+n−1

w(z, t)Ṗ (z, t)dz|

≤ α

S∑
n=1

∫ z−n

z+n−1

2cL2δ8[w′′(z, t)]2dz

+
cα

2δ8

S∑
n=1

∫ z−n

z+n−1

[Ṗ (z, t)]2dz, (B.19)

where δ8 is a positive constant. So that B5 satisfies

B5 ≤ −αEISw(L, t)P ′′′(L, t) +
αρmaxLg

2δ7

+
cα

2δ8

S∑
n=1

∫ z−n

z+n−1

[Ṗ (z, t)]2dz − α
S∑
n=1

∫ z−n

z+n−1

(EIn

−2L2δ7gρmax − 2L2cδ8)[w′′(z, t)]2dz (B.20)

Using the definition of P (z, t) and integrating by part,

B6 can be written as

B6 = ζ

S∑
n=1

∫ z−n

z+n−1

ρn(L− z)Ṗ ′(z, t)Ṗ (z, t)dz

−ζ
S∑
n=1

∫ z−n

z+n−1

ρn(L− z)θ̇(t)Ṗ (t)dz

= ζ

S−1∑
n=1

(ρn − ρn+1)(L− z−n )[Ṗ (z−n , t)]
2

−ζ
S∑
n=1

∫ z−n

z+n−1

ρn(L− z)θ̇(t)Ṗ (z, t)dz

+
ζ

2

S∑
n=1

∫ z−n

z+n−1

ρn[Ṗ (z, t)]2dz (B.21)

Using the Young’s inequality, the term ζ
∑S
n=1

∫ z−n
z+n−1

ρn

×(L− z)θ̇(t)Ṗ (z, t)dz in B6 satisfies following inequal-

ity:

|ζ
S∑
n=1

∫ z−n

z+n−1

ρn(L− z)θ̇(t)Ṗ (z, t)dz|

≤ Lζδ9
2

S∑
n=1

∫ z−n

z+n−1

ρn[Ṗ (z, t)]2dz +
ζρmaxL

2

2δ9
[θ̇(t)]2dz

(B.22)

where δ9 is a positive constant. So that B6 satisfies

B6 ≤ ζ

S−1∑
n=1

(ρn − ρn+1)(L− z−n )[Ṗ (z−n , t)]
2 +

ζρmaxL
2

2δ9

×[θ̇(t)]2dz +
ζ + Lζδ9

2

S∑
n=1

∫ z−n

z+n−1

ρn[Ṗ (z, t)]2dz

(B.23)

Using the motion equation (2), B7 can be written as

B7 = −ζ
2
LEI1[w′′(0, t)]2 − ζ

S−1∑
n=1

(ρn − ρn+1)g(L

−z−n )w(z−n , t) cos θ(t)− ζ
S∑
n=1

∫ z−n

z+n−1

w(z, t)ρng

× cos θ(t)dz +
3ζ

2

S∑
n=1

∫ z−n

z+n−1

EIn[w′′(z, t)]2

−ζ
S∑
n=1

∫ z−n

z+n−1

(L− z)w′(z, t)cṖ (z, t)dz (B.24)
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Considering ρn > ρn+1 and using the Young’s inequal-

ity and (12), we have the first term of B7 satisfies

|ζ
S−1∑
n=1

(ρn − ρn+1)g(L− z−n )w(z−n , t) cos θ(t)|

≤ ζρmaxgL

S−1∑
n=1

|w(z−n , t) cos θ(t)|

≤ δ108gL2(S − 1)ζρmax

2

S∑
n=1

∫ z−n

z+n−1

[w′′(z, t)]2dz

+
gL(S − 1)ζρmax

2δ10
(B.25)

where δ10 is a positive constant. Similar with (B.18),

the second term in B7 satisfies

|ζ
S∑
n=1

∫ z−n

z+n−1

w(z, t)ρng cos θ(t)dz|

≤ 2L2δ7gς

S∑
n=1

∫ z−n

z+n−1

ρmax[w′′(z, t)]2dz +
ζρmaxLg

2δ7

(B.26)

Using the Young’s inequality and (11), the third term

of B7 satisfies following inequality.

|ζ
S∑
n=1

∫ z−n

z+n−1

(L− z)w′(z, t)cṖ (z, t)dz|

≤ cL2δ11ζ

S∑
n=1

∫ z−n

z+n−1

[w′′(z, t)]2dz

+
cLζ

2δ11

S∑
n=1

∫ z−n

z+n−1

[Ṗ (z, t)]2dz (B.27)

where δ12 is a positive constant. So that B7 satisfies

B7 ≤ ζ

S∑
n=1

∫ z−n

z+n−1

(
2L2δ7gρmax +

8(S − 1)ρmaxδ10gL
2

2

+
3

2
EIn + cL2δ11

)
[w′′(z, t)]2dz +

ζρmaxLg

2δ7

+
(S − 1)ζρmaxgL

2δ10
+
cLζ

2δ11

S∑
n=1

∫ z−n

z+n−1

[Ṗ (z, t)]2dz

−ζ
2
LEI1[w′′(0, t)]2 (B.28)

Using the definition of P (z, t) and integrating by part,

B8 can be written as

B8 = −ξ
S∑
n=1

∫ z−n

z+n−1

ρnzṖ
′(z, t)Ṗ (z, t)dz

+ξ

S∑
n=1

∫ z−n

z+n−1

ρnzθ̇(t)Ṗ (t)dz

= −ξ
2

S−1∑
n=1

(ρn − ρn+1)z−n [Ṗ (z−n , t)]
2

−ξ
2

S∑
n=1

ρSL[Ṗ (L, t)]2 +
ξ

2

S∑
n=1

∫ z−n

z+n−1

ρn[Ṗ (z, t)]2dz

+ξ

S∑
n=1

∫ z−n

z+n−1

ρnzθ̇(t)Ṗ (z, t)dz (B.29)

Using the Young’s inequality, the forth term of B8 sat-

isfies following inequality.

|ξ
S∑
n=1

∫ z−n

z+n−1

ρnzṖ (z, t)θ̇(t)dz|

≤
S∑
n=1

∫ z−n

z+n−1

δ12ξρnL

2
[Ṗ (z, t)]2dz +

ξρmaxL
2

4δ12
[θ̇(t)]2

(B.30)

where δ13 is a positive constant. So that B8 satisfies

B8 ≤
ξ

2

S∑
n=1

∫ z−n

z+n−1

ρn(1 + δ12L)[Ṗ (z, t)]2dz − ξ

2

S∑
n=1

ρSL

×[Ṗ (L, t)]2 − ξ

2

S−1∑
n=1

(ρn − ρn+1)z−n [Ṗ (z−n , t)]
2

+
ξρmaxL

2

4δ12
[θ̇(t)]2 (B.31)

Using the motion equation (2) and integrating by part,

B9 can be written as

B9 = ξ

S−1∑
n=1

(ρn − ρn+1)z−n w(z−n , t) cos θ(t)−
S∑
n=1

∫ z−n

z+n−1

ξ

×ρngw(z, t) cos θ(t)dz + ξρSLw(L, t) cos θ(t)

+ξEISLw(L, t)P ′′′(L, t) + ξ

S∑
n=1

∫ z−n

z+n−1

czw′(z, t)

×Ṗ (z, t)dz +
3ξ

2

S∑
n=1

∫ z−n

z+n−1

EIn[w′′(z, t)]2dz(B.32)

Similar with (B.25), (B.18) and (B.27), the first, third

and sixth terms of B9 satisfy respectively following in-

equalities:

|ξ
S−1∑
n=1

(ρn − ρn+1)z−n w(z−n , t) cos θ(t)|

≤ 8(S − 1)δ10ξρmaxgL
2

2

S∑
n=1

∫ z−n

z+n−1

[w′′(z, t)]2dz

+
(S − 1)ξρmaxgL

2δ10
(B.33)
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|ξ
S∑
n=1

∫ z−n

z+n−1

ρngw(z, t) cos θ(t)dz|

≤ 2L2δ7gξ

S∑
n=1

∫ z−n

z+n−1

ρmax[w′′(z, t)]2dz +
ξρmaxLg

2δ7

(B.34)

|ξ
S∑
n=1

∫ z−n

z+n−1

zw′(z, t)cṖ (z, t)dz|

≤ cL2δ11ξ

S∑
n=1

∫ z−n

z+n−1

[w′′(z, t)]2dz

+
cLξ

2δ11

S∑
n=1

∫ z−n

z+n−1

[Ṗ (z, t)]2dz (B.35)

Using the Young’s inequality and (12), the second term

of B9 satisfies following inequality:

|ξρSLw(L, t) cos θ(t)|

≤ 8δ13ξρSgL
2

2

S∑
n=1

∫ z−n

z+n−1

[w′′(z, t)]2dz +
ξρSgL

2δ13
(B.36)

So that B9 satisfies

B9 ≤ ξ

S∑
n=1

∫ z−n

z+n−1

(8(S − 1)δ10ρmaxgL
2

2
+

8δ13ρSgL
2

2

+
3EIn

2
+ 2L2δ7gρmax + cL2δ11

)
[w′′(z, t)]2dz

+ξEISLw(L, t)P ′′′(L, t) +
ξρSgL

2δ13
+
ξρmaxLg

2δ7

+
cLξ

2δ11

S∑
n=1

∫ z−n

z+n−1

[Ṗ (z, t)]2dz +
(S − 1)ξρmaxgL

2δ10

(B.37)

Using (B.16), (B.20), (B.23), (B.28), (B.31) and (B.37)

for (B.13), we obtain

V̇III(t) ≤ −
S∑
n=1

∫ z−n

z+n−1

[
αEIn − 2L2(α+ ζ + ξ)δ7gρmax

−3(ζ + ξ)

2
EIn −

8(S − 1)(ζ + ξ)δ10ρmaxgL
2

2

−2L2αcδ8 −
8ξδ13ρSgL

2

2
− cL2(ζ + ξ)δ11

]
×[w′′(z, t)]2dz − (α− ξL)EISw(L, t)P ′′′(L, t)

+

S∑
n=1

∫ z−n

z+n−1

[ cα
2δ8

+
cL(ζ + ξ)

2δ11
+ αρn(1 +

δ6L

2
)

+
ξ

2
ρn(1 + δ12L) +

ζ

2
ρn +

Lζδ9
2

ρn

]
[Ṗ (z, t)]2dz

−ξ
2

S∑
n=1

ρSL[Ṗ (L, t)]2 +
(ξρmaxL

2

4δ12
+
ζρmaxL

2

2δ9

+
αρmaxL

2

4δ6

)
[θ̇(t)]2 − ζ

2
LEI1[w′′(0, t)]2

−
S−1∑
n=1

(ρn − ρn+1)
[ξ

2
z−n − ζ(L− z−n )

]
[Ṗ (z−n , t)]

2

+
(α+ ζ + ξ)ρmaxLg

2δ7
+
ξρSgL

2δ13

+
(S − 1)(ζ + ξ)ρmaxgL

2δ10
(B.38)

Using (B.7), (B.12) and (B.38), we can obtain

V̇ (t) ≤ −
S∑
n=1

∫ z−n

z+n−1

[
αEIn − 2L2(α+ ζ + ξ)δ7gρmax

−8(S − 1)(ζ + ξ)δ10ρmaxgL
2

2
− 8ξδ13ρSgL

2

2

−3(ζ + ξ)

2
EIn − 2L2αcδ8 − cL2(ζ + ξ)δ11

−2L2γρngδ5

]
[w′′(z, t)]2dz −

S∑
n=1

∫ z−n

z+n−1

[
βc

− cα
2δ8
− αρn(1 +

δ6L

2
)− cL(ζ + ξ)

2δ11
− Lζδ9

2
ρn

−ζ
2
ρn −

βδ3ρng

2
− ξ

2
ρn(1 + δ12L)

]
[Ṗ (z, t)]2dz

−
S−1∑
n=1

(ρn − ρn+1)
[ξ

2
z−n − ζ(L− z−n )

]
[Ṗ (z−n , t)]

2

−
(k

2
− ξρmaxL

2

4δ12
− ζρmaxL

2

2δ9
− αρmaxL

2

4δ6

−βEI1
2δ4

)
[θ̇(t)]2 − ξ

2

S∑
n=1

ρSL[Ṗ (L, t)]2

−EI1
2

(ζL− βδ4)[P ′′(0, t)]2 −
(
kθ −

γgρmaxL

2δ5

)
×[θ̇(t) + θe(t)]

2 − ku[ua(t)]2 − k

2
[θe(t)]

2

+
(S − 1)(ζ + ξ)ρmaxgL

2δ10
+
ξρSgL

2δ13

+
(α+ ζ + ξ)ρmaxLg

2δ7
+
βgLρmax

2δ3
≤−λ3(VI(t) + VII(t)) + ε, (B.39)

where

ε =
(S − 1)(ζ + ξ)ρmaxgL

2δ10
+
ξρSgL

2δ13

+
(α+ ζ + ξ)ρmaxLg

2δ7
+
βgLρmax

2δ3
(B.40)

and the positive constants α, β, γ, ζ, ξ, c, k, ku, kθ,

δ1-δ13 are chosen under the following conditions.

β > max
{2Lρmax(2Lαδ1 + ζδ2)

EImin
,
ζ

δ2
+
α

δ1

}
(B.41)
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κn = αEIn − 2L2(α+ ζ + ξ)δ7gρmax − 2L2αcδ8

−8(S − 1)(ζ + ξ)δ10ρmaxgL
2

2
− 2L2γρngδ5

−3(ζ + ξ)

2
EIn −

8ξδ13ρSgL
2

2

−cL2(ζ + ξ)δ11 > 0, n ∈ {1, 2, ..., S} (B.42)

νn = βc− cα

2δ8
− βδ3ρng

2
− cL(ζ + ξ)

2δ11
− Lζδ9

2
ρn

−αρn(1 +
δ6L

2
)− ξ

2
ρn(1 + δ12L)− ζ

2
ρn > 0,

n ∈ {1, 2, ..., S} (B.43)

χ1 = min
{ 2ν1
βρ1

, ...,
2νS
βρS

}
= −δ6αL

β
− gδ3 −

Lζδ9
β
− 2α+ ζ + ξ(1 + δ12L)

β

−cL(ζ + ξ)

βδ11ρmax
− cα

δ8βρmax
(B.44)

χ2 = min
{ 2κ1
βEI1

, ...,
2κS
βEIS

}
=

2α

β
− 3(ζ + ξ)

β
− 8(S − 1)(ζ + ξ)δ10ρmaxgL

2

βEImax

−4L2δ7g(α+ ζ + ξ)ρmax

βEImax
− 2cL2δ11(ζ + ξ)

βEImax

−4cL2δ8α

βEImax
− 4L2ρngγδ5

βEImax
− 8ξδ13ρSgL

2

βEImax
(B.45)

σ1 =
k

2
− ρmaxL

2

2
(
ζ

δ9
+

2ξ

δ12
+

α

2δ6
)− βEI1

2δ4
> 0 (B.46)

σ2 =
ξ

2
z−n − ζ(L− z−n ) > 0 (B.47)

σ3 = kθ −
γgρmaxL

2δ5
> 0 (B.48)

σ4 = ζL− βδ4 > 0 (B.49)

where EImax is the maximum value of EIn, n ∈ {1, 2,
..., S}.

λ3 = min
{
χ1, χ2,

2σ3
JAγ

, 1,
2ku
mc

}
> 0. (B.50)

Combining (A.4) and (B.39), we finally obtain

V̇ (t) ≤ −λV (t) + ε, (B.51)

where λ = λ3/λ2 > 0.

C. Proof of Step 3

Proof : Multiplying inequation (B.51) by eλt yields

∂

∂t
[V (t)eλt] ≤ εeλt. (C.1)

Integrating of the above inequality leads to

V (t)eλt − V (0) ≤ ε

λ
eλt − ε

λ
(C.2)

then we can obtain

V (t) ≤
[
V (0)− ε

λ

]
e−λt +

ε

λ
≤V (0)e−λt +

ε

λ
∈L∞(C.3)

which suggests V (t) is bounded. Using (16), (A.4) and

(12), we obtain

βEIn
16L

[w(z, t)]2 ≤
S∑
n=1

∫ z−n

z+n−1

βEIn
2

[w′′(z, t)]2dz

≤ VI(t)≤VI(t) + VII(t) ≤
1

λ1
V (t)∈L∞

(C.4)

∀(z, t) ∈ [z+n−1, z
−
n ]×[0,∞), n ∈ {1, 2, ..., S}. From (C.3)

and (C.4), we have

|w(z, t)| ≤

√
16L

λ1βEIn
[V (0)e−λt +

ε

λ
]

≤

√
16L

λ1βEIn
[V (0) +

ε

λ
] (C.5)

∀(z, t) ∈ [z+n−1, z
−
n ] × [0,∞), n ∈ {1, 2, ..., S}. Further

more, from (C.5), we have

lim
t→∞

|w(z, t)| ≤

√
16Lε

λλ1βEIn
(C.6)

∀(z, t) ∈ [z+n−1, z
−
n ]× [0,∞), n ∈ {1, 2, ..., S}. Using (17)

and (A.4), we have

k

2
[θe(t)]

2 ≤ VII(t)≤VI(t) + VII(t) ≤
1

λ1
V (t)∈L∞ (C.7)

From (C.3) and (C.7), we have

|θe(t)| ≤
√

2

kλ1
[V (0)e−λt +

ε

λ
] ≤

√
2

kλ1
[V (0) +

ε

λ
],

∀t ∈ [0,∞) (C.8)

Further more, from (C.8), we have

lim
t→∞

|θe(t)| ≤
√

2ε

kλλ1
, ∀t ∈ [0,∞). (C.9)


