1,390 research outputs found

    Ice nucleation by fertile soil dusts: Relative importance of mineral and biogenic components

    Get PDF
    Agricultural dust emissions have been estimated to contribute around 20% to the global dust burden. In contrast to dusts from arid source regions, the ice-nucleating abilities of which have been relatively well studied, soil dusts from fertile sources often contain a substantial fraction of organic matter. Using an experimental methodology which is sensitive to a wide range of ice nucleation efficiencies, we have characterised the immersion mode ice-nucleating activities of dusts (d<11 μ m) extracted from fertile soils collected at four locations around England. By controlling droplet sizes, which ranged in volume from 10 to 10 L (concentration=0.02 to 0.1 wt% dust), we have been able to determine the ice nucleation behaviour of soil dust particles at temperatures ranging from 267K (-6°C) down to the homogeneous limit of freezing at about 237K (-36°C). At temperatures above 258K (-15°C) we find that the ice-nucleating activity of soil dusts is diminished by heat treatment or digestion with hydrogen peroxide, suggesting that a major fraction of the ice nuclei stems from biogenic components in the soil. However, below 258 K, we find that the ice active site densities tend towards those expected from the mineral components in the soils, suggesting that the inorganic fraction of soil dusts, in particular the K-feldspar fraction, becomes increasingly important in the initiation of the ice phase at lower temperatures. We conclude that dusts from agricultural activities could contribute significantly to atmospheric IN concentrations, if such dusts exhibit similar activities to those observed in the current laboratory study

    Evidence for Shear Stress-Mediated Dilation of the Internal Carotid Artery in Humans.

    Get PDF
    Increases in arterial carbon dioxide tension (hypercapnia) elicit potent vasodilation of cerebral arterioles. Recent studies have also reported vasodilation of the internal carotid artery during hypercapnia, but the mechanism(s) mediating this extracranial vasoreactivity are unknown. Hypercapnia increases carotid shear stress, a known stimulus to vasodilation in other conduit arteries. To explore the hypothesis that shear stress contributes to hypercapnic internal carotid dilation in humans, temporal changes in internal and common carotid shear rate and diameter, along with changes in middle cerebral artery velocity, were simultaneously assessed in 18 subjects at rest and during hypercapnia (6% carbon dioxide). Middle cerebral artery velocity increased significantly (69±10-103±17 cm/s; P<0.01) along with shear in both the internal (316±52-518±105 1/s; P<0.01) and common (188±40-275±61 1/s; P<0.01) carotids. Diameter also increased (P<0.01) in both carotid arteries (internal: +6.3±2.9%; common: +5.8±3.0%). Following hypercapnia onset, there was a significant delay between the onset of internal carotid shear (22±12 seconds) and diameter change (85±51 seconds). This time course is associated with shear-mediated dilation of larger conduit arteries in humans. There was a strong association between change in shear and diameter of the internal carotid (r=0.68; P<0.01). These data indicate, for the first time in humans, that shear stress is an important stimulus for hypercapnic vasodilation of the internal carotid artery. The combination of a hypercapnic stimulus and continuous noninvasive, high-resolution assessment of internal carotid shear and dilation may provide novel insights into the function and health of the clinically important extracranial arteries in humans

    The formation of professional identity in medical students: considerations for educators

    Get PDF
    &lt;b&gt;Context&lt;/b&gt; Medical education is about more than acquiring an appropriate level of knowledge and developing relevant skills. To practice medicine students need to develop a professional identity – ways of being and relating in professional contexts.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Objectives&lt;/b&gt; This article conceptualises the processes underlying the formation and maintenance of medical students’ professional identity drawing on concepts from social psychology.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Implications&lt;/b&gt; A multi-dimensional model of identity and identity formation, along with the concepts of identity capital and multiple identities, are presented. The implications for educators are discussed.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions&lt;/b&gt; Identity formation is mainly social and relational in nature. Educators, and the wider medical society, need to utilise and maximise the opportunities that exist in the various relational settings students experience. Education in its broadest sense is about the transformation of the self into new ways of thinking and relating. Helping students form, and successfully integrate their professional selves into their multiple identities, is a fundamental of medical education

    Flexible Meta-Regression to Assess the Shape of the Benzene–Leukemia Exposure–Response Curve

    Get PDF
    Ba c k g r o u n d: Previous evaluations of the shape of the benzene–leukemia exposure–response curve (ERC) were based on a single set or on small sets of human occupational studies. Integrating evidence from all available studies that are of sufficient quality combined with flexible meta-regression models is likely to provide better insight into the functional relation between benzene exposure and risk of leukemia. Objectives: We used natural splines in a flexible meta-regression method to assess the shape of the benzene–leukemia ERC. Met h o d s: We fitted meta-regression models to 30 aggregated risk estimates extracted from nine human observational studies and performed sensitivity analyses to assess the impact of a priori assessed study characteristics on the predicted ERC. Re s u l t s: The natural spline showed a supralinear shape at cumulative exposures less than 100 ppmyears, although this model fitted the data only marginally better than a linear model (p = 0.06). Stratification based on study design and jackknifing indicated that the cohort studies had a considerable impact on the shape of the ERC at high exposure levels (&gt; 100 ppm-years) but that predicted risks for the low exposure range (&lt; 50 ppm-years) were robust. Co n c l u s i o n s: Although limited by the small number of studies and the large heterogeneity between studies, the inclusion of all studies of sufficient quality combined with a flexible meta-regression method provides the most comprehensive evaluation of the benzene–leukemia ERC to date. The natural spline based on all data indicates a significantly increased risk of leukemia [relative risk (RR) = 1.14; 95 % confidence interval (CI), 1.04–1.26] at an exposure level as low as 10 ppm-years. Key w o r d s: benzene, epidemiology, leukemia, meta-regression, quantitative risk assessment. Environ Health Perspect 118:526–532 (2010). doi:10.1289/ehp.0901127 available vi

    CRISPR/Cas9 DNA cleavage at SNP-derived PAM enables both in vitro and in vivo KRT12 mutation-specific targeting

    Get PDF
    CRISPR/Cas9-based therapeutics hold the possibility for permanent treatment of genetic disease. The potency and specificity of this system has been used to target dominantly inherited conditions caused by heterozygous missense mutations through inclusion of the mutated base in the short-guide RNA (sgRNA) sequence. This research evaluates a novel approach for targeting heterozygous single-nucleotide polymorphisms (SNPs) using CRISPR/Cas9. We determined that a mutation within KRT12, which causes Meesmann's epithelial corneal dystrophy (MECD), leads to the occurrence of a novel protospacer adjacent motif (PAM). We designed an sgRNA complementary to the sequence adjacent to this SNP-derived PAM and evaluated its potency and allele specificity both in vitro and in vivo. This sgRNA was found to be highly effective at reducing the expression of mutant KRT12 mRNA and protein in vitro. To assess its activity in vivo we injected a combined Cas9/sgRNA expression construct into the corneal stroma of a humanized MECD mouse model. Sequence analysis of corneal genomic DNA revealed non-homologous end-joining repair resulting in frame-shifting deletions within the mutant KRT12 allele. This study is the first to demonstrate in vivo gene editing of a heterozygous disease-causing SNP that results in a novel PAM, further highlighting the potential for CRISPR/Cas9-based therapeutics

    3D structure of individual mammalian genomes studied by single cell Hi-C

    Get PDF
    The folding of genomic DNA from the beads-on-a-string like structure of nucleosomes into higher order assemblies is critically linked to nuclear processes. We have calculated the first 3D structures of entire mammalian genomes using data from a new chromosome conformation capture procedure that allows us to first image and then process single cells. This has allowed us to study genome folding down to a scale of <100 kb and to validate the structures. We show that the structures of individual topological-associated domains and loops vary very substantially from cell-to-cell. By contrast, A/B compartments, lamin-associated domains and active enhancers/promoters are organized in a consistent way on a genome-wide basis in every cell, suggesting that they could drive chromosome and genome folding. Through studying pluripotency factor- and NuRD-regulated genes, we illustrate how single cell genome structure determination provides a novel approach for investigating biological processes.We thank the Wellcome Trust (082010/Z/07/Z), the EC FP7 4DCellFate project (277899) and the MRC (MR/M010082/1) for financial support

    Grabbing subitizing with both hands: bimanual number processing

    Get PDF
    Visual judgment of small numerosities (<4) is generally assumed to be done through subitizing, which is a faster process than counting. Subitizing has also been shown to occur in haptic judgment of the number of spheres in the hand. Furthermore, interactions have been shown to exist between visually perceived numbers and hand motor action. In this study, we compare enumeration of a set of spheres presented to one hand (unimanual) and enumeration of the same total number of spheres presented divided over the two hands (bimanual). Our results show that, like in vision, a combination of subitizing and counting is used to process numbers in active touch. This shows that numbers are processed in a modality-independent way. This suggests that there are not only interactions between perception of numbers and hand motor action, but rather that number representation is modality-independent

    Design of Experiments for Screening

    Full text link
    The aim of this paper is to review methods of designing screening experiments, ranging from designs originally developed for physical experiments to those especially tailored to experiments on numerical models. The strengths and weaknesses of the various designs for screening variables in numerical models are discussed. First, classes of factorial designs for experiments to estimate main effects and interactions through a linear statistical model are described, specifically regular and nonregular fractional factorial designs, supersaturated designs and systematic fractional replicate designs. Generic issues of aliasing, bias and cancellation of factorial effects are discussed. Second, group screening experiments are considered including factorial group screening and sequential bifurcation. Third, random sampling plans are discussed including Latin hypercube sampling and sampling plans to estimate elementary effects. Fourth, a variety of modelling methods commonly employed with screening designs are briefly described. Finally, a novel study demonstrates six screening methods on two frequently-used exemplars, and their performances are compared

    Haptic subitizing across the fingers

    Get PDF
    Numerosity judgments of small sets of items (≤ 3) are generally fast and errorfree, while response times and error rates increase rapidly for larger numbers of items. We investigated an efficient process used for judging small numbers of items (known as subitizing) in active touch. We hypothesized that this efficient process for numerosity judgment might be related to stimulus properties that allow for efficient (parallel) search. Our results showed that subitizing was not possible forraised lines among flat surfaces, whereas this type of stimulus could be detected in parallel over the fingers. However, subitizing was possible when the number of fingers touching a surface had to be judged while the other fingers were lowered in mid-air. In the latter case, the lack of tactile input is essential, since subitizing was not enabled by differences in proprioceptive information from the fingers. Our results show that subitizing using haptic information from the fingers is possible only whensome fingers receive tactile information while other fingers do not
    corecore