511 research outputs found

    Potential overestimation of community respiration in the western Pacific boundary ocean : what causes the putative net heterotrophy in oligotrophic systems?

    Get PDF
    Microbial metabolism is of great importance in affecting the efficiency of biological pump and global carbon cycles. However, the metabolic state of the oligotrophic ocean, the largest biome on Earth, remains contentious. We examined the planktonic and bacterial metabolism using in vitro incubations along the western Pacific boundary during September and October 2016. The integrated gross primary production (GPP) of the photic zone exhibited higher values in the region of 2°–8°N along 130°E and the western Luzon Strait, which is consistent with the regional variability of nutrients in the different ocean provinces. Spatially, the community respiration (CR) was less variable than the GPP and slightly exceeded the GPP at most of the sampling stations. Overall, the in vitro incubation results suggest a prevailing heterotrophic state in this region. A comparison of the metabolic rates from the in vitro incubations with recently published biogeochemical model results in the same region shows that our observed GPP values were close to those predicted by the model, but the measured CR was approximately 30% higher than the modeled values. We also found that most of the in vitro CR estimates were higher than the upper range of the empirical CR estimated from the sum of the contributions of the main trophic groups. Conversely, the estimates of the empirical CR support the rationality of the CR predicted by the biogeochemical model. In general, the results indicate that systematic net heterotrophy is more likely a result of the overestimation of CR measured by the light–dark bottle incubation experiments, although the exact cause of the methodological problem remains unknown

    Recruitment in the sea: bacterial genes required for inducing larval settlement in a polychaete worm

    Get PDF
    Metamorphically competent larvae of the marine tubeworm Hydroides elegans can be induced to metamorphose by biofilms of the bacterium Pseudoalteromonas luteoviolacea strain HI1. Mutational analysis was used to identify four genes that are necessary for metamorphic induction and encode functions that may be related to cell adhesion and bacterial secretion systems. No major differences in biofilm characteristics, such as biofilm cell density, thickness, biomass and EPS biomass, were seen between biofilms composed of P. luteoviolacea (HI1) and mutants lacking one of the four genes. The analysis indicates that factors other than those relating to physical characteristics of biofilms are critical to the inductive capacity of P. luteoviolacea (HI1), and that essential inductive molecular components are missing in the non-inductive deletion-mutant strains

    Jellyfish Modulate Bacterial Dynamic and Community Structure

    Get PDF
    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom - forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish - enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to ‘jellyfish - associated’ and ‘free - living’ bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into possible changes in bacterial population dynamics and nutrient pathways following jellyfish blooms which have important implications for ecology of coastal waters

    PAH mineralization and bacterial organotolerance in surface sediments of the Charleston Harbor estuary

    Get PDF
    Semi-volatile organic compounds (SVOCs) in estuarine waters can adversely affect biota but watershed sources can be difficult to identify because these compounds are transient. Natural bacterial assemblages may respond to chronic, episodic exposure to SVOCs through selection of more organotolerant bacterial communities. We measured bacterial production, organotolerance and polycyclic aromatic hydrocarbon (PAH) mineralization in Charleston Harbor and compared surface sediment from stations near a known, permitted SVOC outfall (pulp mill effluent) to that from more pristine stations. Naphthalene additions inhibited an average of 77% of bacterial metabolism in sediments from the more pristine site (Wando River). Production in sediments nearest the outfall was only inhibited an average of 9% and in some cases, was actually stimulated. In general, the stations with the highest rates of bacterial production also were among those with the highest rates of PAH mineralization. This suggests that the capacity to mineralize PAH carbon is a common feature amongst the bacterial assemblage in these estuarine sediments and could account for an average of 5.6% of bacterial carbon demand (in terms of production) in the summer, 3.3% in the spring (April) and only 1.2% in winter (December)

    The Homeobox Protein CEH-23 Mediates Prolonged Longevity in Response to Impaired Mitochondrial Electron Transport Chain in C. elegans

    Get PDF
    Recent findings indicate that perturbations of the mitochondrial electron transport chain (METC) can cause extended longevity in evolutionarily diverse organisms. To uncover the molecular basis of how altered METC increases lifespan in C. elegans, we performed an RNAi screen and revealed that three predicted transcription factors are specifically required for the extended longevity of mitochondrial mutants. In particular, we demonstrated that the nuclear homeobox protein CEH-23 uniquely mediates the longevity but not the slow development, reduced brood size, or resistance to oxidative stress associated with mitochondrial mutations. Furthermore, we showed that ceh-23 expression levels are responsive to altered METC, and enforced overexpression of ceh-23 is sufficient to extend lifespan in wild-type background. Our data point to mitochondria-to-nucleus communications to be key for longevity determination and highlight CEH-23 as a novel longevity factor capable of responding to mitochondrial perturbations. These findings provide a new paradigm for how mitochondria impact aging and age-dependent diseases

    Comparative Toxicity of Nanoparticulate CuO and ZnO to Soil Bacterial Communities

    Get PDF
    The increasing industrial application of metal oxide Engineered Nano-Particles (ENPs) is likely to increase their environmental release to soils. While the potential of metal oxide ENPs as environmental toxicants has been shown, lack of suitable control treatments have compromised the power of many previous assessments. We evaluated the ecotoxicity of ENP (nano) forms of Zn and Cu oxides in two different soils by measuring their ability to inhibit bacterial growth. We could show a direct acute toxicity of nano-CuO acting on soil bacteria while the macroparticulate (bulk) form of CuO was not toxic. In comparison, CuSO4 was more toxic than either oxide form. Unlike Cu, all forms of Zn were toxic to soil bacteria, and the bulk-ZnO was more toxic than the nano-ZnO. The ZnSO4 addition was not consistently more toxic than the oxide forms. Consistently, we found a tight link between the dissolved concentration of metal in solution and the inhibition of bacterial growth. The inconsistent toxicological response between soils could be explained by different resulting concentrations of metals in soil solution. Our findings suggested that the principal mechanism of toxicity was dissolution of metal oxides and sulphates into a metal ion form known to be highly toxic to bacteria, and not a direct effect of nano-sized particles acting on bacteria. We propose that integrated efforts toward directly assessing bioavailable metal concentrations are more valuable than spending resources to reassess ecotoxicology of ENPs separately from general metal toxicity

    Metagenomic Analysis of Lysogeny in Tampa Bay: Implications for Prophage Gene Expression

    Get PDF
    Phage integrase genes often play a role in the establishment of lysogeny in temperate phage by catalyzing the integration of the phage into one of the host's replicons. To investigate temperate phage gene expression, an induced viral metagenome from Tampa Bay was sequenced by 454/Pyrosequencing. The sequencing yielded 294,068 reads with 6.6% identifiable. One hundred-three sequences had significant similarity to integrases by BLASTX analysis (e≤0.001). Four sequences with strongest amino-acid level similarity to integrases were selected and real-time PCR primers and probes were designed. Initial testing with microbial fraction DNA from Tampa Bay revealed 1.9×107, and 1300 gene copies of Vibrio-like integrase and Oceanicola-like integrase L−1 respectively. The other two integrases were not detected. The integrase assay was then tested on microbial fraction RNA extracted from 200 ml of Tampa Bay water sampled biweekly over a 12 month time series. Vibrio-like integrase gene expression was detected in three samples, with estimated copy numbers of 2.4-1280 L−1. Clostridium-like integrase gene expression was detected in 6 samples, with estimated copy numbers of 37 to 265 L−1. In all cases, detection of integrase gene expression corresponded to the occurrence of lysogeny as detected by prophage induction. Investigation of the environmental distribution of the two expressed integrases in the Global Ocean Survey Database found the Vibrio-like integrase was present in genome equivalents of 3.14% of microbial libraries and all four viral metagenomes. There were two similar genes in the library from British Columbia and one similar gene was detected in both the Gulf of Mexico and Sargasso Sea libraries. In contrast, in the Arctic library eleven similar genes were observed. The Clostridium-like integrase was less prevalent, being found in 0.58% of the microbial and none of the viral libraries. These results underscore the value of metagenomic data in discovering signature genes that play important roles in the environment through their expression, as demonstrated by integrases in lysogeny

    Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea

    Get PDF
    A seven-year oceanographic time series in NW Mediterranean surface waters was combined with pyrosequencing of ribosomal RNA (16S rRNA) and ribosomal RNA gene copies (16S rDNA) to examine the environmental controls on SAR11 ecotype dynamics and potential activity. SAR11 diversity exhibited pronounced seasonal cycles remarkably similar to total bacterial diversity. The timing of diversity maxima was similar across narrow and broad phylogenetic clades and strongly associated with deep winter mixing. Diversity minima were associated with periods of stratification that were low in nutrients and phytoplankton biomass and characterised by intense phosphate limitation (turnover time80%) by SAR11 Ia. A partial least squares (PLS) regression model was developed that could reliably predict sequence abundances of SAR11 ecotypes (Q2=0.70) from measured environmental variables, of which mixed layer depth was quantitatively the most important. Comparison of clade-level SAR11 rRNA:rDNA signals with leucine incorporation enabled us to partially validate the use of these ratios as an in-situ activity measure. However, temporal trends in the activity of SAR11 ecotypes and their relationship to environmental variables were unclear. The strong and predictable temporal patterns observed in SAR11 sequence abundance was not linked to metabolic activity of different ecotypes at the phylogenetic and temporal resolution of our study

    Reconciliation of the carbon budget in the ocean’s twilight zone

    Get PDF
    Photosynthesis in the surface ocean produces approximately 100 gigatonnes of organic carbon per year, of which 5 to 15 per cent is exported to the deep ocean1, 2. The rate at which the sinking carbon is converted into carbon dioxide by heterotrophic organisms at depth is important in controlling oceanic carbon storage3. It remains uncertain, however, to what extent surface ocean carbon supply meets the demand of water-column biota; the discrepancy between known carbon sources and sinks is as much as two orders of magnitude4, 5, 6, 7, 8. Here we present field measurements, respiration rate estimates and a steady-state model that allow us to balance carbon sources and sinks to within observational uncertainties at the Porcupine Abyssal Plain site in the eastern North Atlantic Ocean. We find that prokaryotes are responsible for 70 to 92 per cent of the estimated remineralization in the twilight zone (depths of 50 to 1,000 metres) despite the fact that much of the organic carbon is exported in the form of large, fast-sinking particles accessible to larger zooplankton. We suggest that this occurs because zooplankton fragment and ingest half of the fast-sinking particles, of which more than 30 per cent may be released as suspended and slowly sinking matter, stimulating the deep-ocean microbial loop. The synergy between microbes and zooplankton in the twilight zone is important to our understanding of the processes controlling the oceanic carbon sink

    Beetle (Coleoptera: Scirtidae) Facilitation of Larval Mosquito Growth in Tree Hole Habitats is Linked to Multitrophic Microbial Interactions

    Get PDF
    Container-breeding mosquitoes, such as Aedes triseriatus, ingest biofilms and filter water column microorganisms directly to obtain the bulk of their nutrition. Scirtid beetles often co-occur with A. triseriatus and may facilitate the production of mosquito adults under low-resource conditions. Using molecular genetic techniques and quantitative assays, we observed changes in the dynamics and composition of bacterial and fungal communities present on leaf detritus and in the water column when scirtid beetles co-occur with A. triseriatus. Data from terminal restriction fragment polymorphism analysis indicated scirtid presence alters the structure of fungal communities in the water column but not leaf-associated fungal communities. Similar changes in leaf and water bacterial communities occurred in response to mosquito presence. In addition, we observed increased processing of leaf detritus, higher leaf-associated enzyme activity, higher bacterial productivity, and higher leaf-associated fungal biomass when scirtid beetles were present. Such shifts suggest beetle feeding facilitates mosquito production indirectly through the microbial community rather than directly through an increase in available fine particulate organic matter
    corecore