28 research outputs found

    Marine diatoms grown in chemostats under silicate or ammonium limitation. III. Cellular chemical composition and morphology of Chaetoceros debilis, Skeletonema costatum , and Thalassiosira gravida

    Full text link
    Three marine diatoms, Skeletonema costatum, Chaetoceros debilis , and Thalassiosira gravida were grown under no limitation and ammonium or silicate limitation or starvation. Changes in cell morphology were documented with photomicrographs of ammonium and silicate-limited and non-limited cells, and correlated with observed changes in chemical composition. Cultures grown under silicate starvation or limitation showed an increase in particulate carbon, nitrogen and phosporus and chlorophyll a per unit cell volume compared to non-limited cells; particulate silica per cell volume decreased. Si-starved cells were different from Si-limited cells in that the former contained more particulate carbon and silica per cell volume. The most sensitive indicator of silicate limitation or starvation was the ratio C:Si, being 3 to 5 times higher than the values for non-limited cells. The ratios Si:chlorophyll a and S:P were lower and N:Si was higher than non-limited cells by a factor of 2 to 3. The other ratios, C:N, C:P, C:chlorophyll a , N:chlorophyll a , P:chlorophyll a and N:P were considered not to be sensitive indicators of silicate limitation or starvation. Chlorophyll a , and particulate nitrogen per unit cell volume decreased under ammonium limitation and starvation. NH 4 -starved cells contained more chlorophyll a , carbon, nitrogen, silica, and phosphorus per cell volume than NH 4 -limited cells. N:Si was the most sensitive ratio to ammonium limitation or starvation, being 2 to 3 times lower than non-limited cells. Si:chlorophyll a , P:chlorophyll a and N:P were less sensitive, while the ratios C:N, C:chlorophyll a , N:chlorophyll a , C:Si, C:P and Si:P were the least sensitive. Limited cells had less of the limiting nutrient per unit cell volume than starved cells and more of the non-limiting nutrients (i.e., silica and phosphorus for NH 4 -limited cells). This suggests that nutrient-limited cells rather than nutrient-starved cells should be used along with non-limited cells to measure the full range of potential change in cellular chemical composition for one species under nutrient limitation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46631/1/227_2004_Article_BF00392568.pd

    Response of a Lake Michigan coastal lake to anthropogenic catchment disturbance

    Full text link
    A paleolimnological investigation of post-European sediments in a Lake Michigan coastal lake was used to examine the response of Lower Herring Lake to anthropogenic impacts and its role as a processor of watershed inputs. We also compare the timing of this response with that of Lake Michigan to examine the role of marginal lakes as ‘early warning’ indicators of potential changes in the larger connected system and their role in buffering Lake Michigan against anthropogenic changes through biotic interactions and material trapping. Sediment geochemistry, siliceous microfossils and nutrient-related morphological changes in diatoms, identified three major trophic periods in the recent history of the lake. During deforestation and early settlement (pre-1845–1920), lake response to catchment disturbances results in localized increases in diatom abundances with minor changes in existing communities. In this early phase of disturbance, Lower Herring Lake acts as a sediment sink and a biological processor of nutrient inputs. During low-lake levels of the 1930s, the lake goes through a transitional period characterized by increased primary productivity and a major shift in diatom communities. Post-World War II (late 1940s–1989) anthropogenic disturbances push Lower Herring Lake to a new state and a permanent change in diatom community structure dominated by Cyclotella comensis . The dominance of planktonic summer diatom species associated with the deep chlorophyll maximum (DCM) is attributed to epilimnetic nutrient depletion. Declining Si:P ratios are inferred from increased sediment storage of biogenic silica and morphological changes in the silica content of Aulacoseira ambigua and Stephanodiscus niagarae . Beginning in the late 1940s, Lower Herring Lake functions as a biogeochemical processor of catchment inputs and a carbon, nutrient and silica sink. Microfossil response to increased nutrients and increased storage of biogenic silica in Lower Herring Lake and other regional embayments occur approximately 20–25 years earlier than in a nearby Lake Michigan site. Results from this study provide evidence for the role of marginal lakes and bays as nutrient buffering systems, delaying the impact of anthropogenic activities on the larger Lake Michigan system.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43091/1/10933_2004_Article_1688.pd

    OPINION Endless summer: internal loading processes dominate nutrient cycling in tropical lakes

    Full text link
    1. Fossil diatom assemblages deposited in more than a dozen African lakes roughly 9500 years BP were dominated by a single planktonic species, Stephanodiscus astraea (Ehrcnb.) Grun. (although realistically this is likely to be a species complex). These diatoms flourished when lake-levels were maximal. Data are included from many of (he large African lakes, and others extending from Lake AbhÉ0, Ethiopia, to Lake Cheshi, Zambia. 2. Because the ecological physiology of Stephanodiscus species is well known one can predict the nutrient regime that must have existed when Stephanodiscus bloomed. Owing to competition for resources Stephano-discus species dominate when the supply ratio of silicon to phosphorus (in moles) in the epilimnion is relatively low (Si:P∌1). Consequently, lakes dominated by S. astraea are often hypereutrophic. 3. We propose a series of hypotheses to explain why tropical lakes have decreasing Si:P ratios as lake-levels increase, primarily owing to internal P-loading processes in the epilimnia. These observations appear to contradict present conceptions of the fundamental relationships governing nutrient loadings to and within lakes. Tropical lakes appear to have had increasing epilimnetic phosphorus loading as lake-levels increased. In contrast, large, deep lakes in the temperate zone are usually oligotrophic, with high Si:P ratios. 4. Our major conclusion is that regeneration rates are greater than removal rates for phosphorus in tropical lakes as compared to temperate lakes, especially where epilimnelic mixing exceeds 50 m. Biological control of the elemental cycles dominate in tropical lakes, whereas nutrient cycles in temperate lakes are dominated by physical processes for a large part of the year. This results in major differences in the fundamental mechanisms of nutrient regeneration and their relationships to morphometric features of lakes in the two regions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71789/1/j.1365-2427.1990.tb00280.x.pd

    The sensitivity of a Tanzanian crater lake to catastrophic tephra input and four millennia of climate change

    No full text
    Diatom genera in many large East African lakes change little throughout the Holocene period suggesting relatively stable ecological conditions and some resilience to environmental change. Ecosystem stability is less common in smaller, more sensitive lakes, such as those within volcanic craters, where external impacts can cause abrupt and rapid fluctuations. A 4100-year diatom and cyanobacteria pigment record from Lake Massoko, a volcanic crater lake in southern Tanzania, is used to illustrate important switches in resource ratios following tephra deposition 1190 years ago. It is hypothesized that the tephra reduced the rate of P diffusion from the sediments and increased the Si:P ratio in the lake. A period of acute change in planktonic diatom communities resulted from the tephra impact and lasted c. 110 years. The magnitude of the change shown by the diatoms and their slow recovery from the tephra may be due in part to a coincident fall in lake level caused by a reduction in regional rainfall. The statistical significance of the tephra impact relative to that of catchment and climate change has been tested using variance partitioning and rate-of-change analysis. Multiproxy indicators show an important period of positive water balance 1700 ago and a relatively dry episode persisting between 1000 and 400 years ago. The lake ecosystem is shown to be highly sensitive to both climate change and tephra deposition

    Twentieth century water quality trends in Minnesota lakes compared with presettlement variability

    Get PDF
    Author Posting. © National Research Council Canada, 2004. This article is posted here by permission of National Research Council Canada for personal use, not for redistribution. The definitive version was published in Canadian Journal of Fisheries and Aquatic Sciences 61 (2004): 561-576, doi:10.1139/F04-015.A diatom-based transfer function was used to reconstruct water chemistry before European settlement in 55 Minnesota lakes. The lakes span three natural ecoregions, which differ in their history of land use, as well as in surficial geology, climate, and vegetation. Postsettlement trends were compared with water chemistry change reconstructed from two presettlement core sections (circa 1750 and 1800) as a measure of natural variability. Presettlement water quality changes were generally small and nondirectional in all three ecoregions. In contrast, half of the urban lakes showed a statistically significant increase in chloride, whereas 30% of urban and 30% of agricultural region lakes record a statistically significant increase in total phosphorus between 1800 and the present. These changes, which are attributed to road salt and nutrient runoff, are strongly correlated with the percentage of watershed area that is developed (residential or urban) in the case of chloride increases and the percentage of developed (metropolitan areas) or agricultural (agricultural areas) land in the case of nutrient increases. Water quality has changed little since 1800 for lakes in the forested regions of northeastern Minnesota. The few changes that are seen in this region are likely related to natural variations in climate or catchment soils.This work was funded by the Minnesota Legislature as recommended by the Legislative Commission on Minnesota Resources through a grant to the Minnesota Pollution Control Agency
    corecore