79 research outputs found

    <i>In vivo</i> gene silencing following non-invasive siRNA delivery into the skin using a novel topical formulation

    Get PDF
    AbstractTherapeutics based on short interfering RNAs (siRNAs), which act by inhibiting the expression of target transcripts, represent a novel class of potent and highly specific next-generation treatments for human skin diseases. Unfortunately, the intrinsic barrier properties of the skin combined with the large size and negative charge of siRNAs make epidermal delivery of these macromolecules quite challenging. To help evaluate the in vivo activity of these therapeutics and refine delivery strategies we generated an innovative reporter mouse model that predominantly expresses firefly luciferase (luc2p) in the paw epidermis — the region of murine epidermis that most closely models the tissue architecture of human skin. Combining this animal model with state-of-the-art live animal imaging techniques, we have developed a real-time in vivo analysis work-flow that has allowed us to compare and contrast the efficacies of a wide range nucleic acid-based gene silencing reagents in the skin of live animals. While inhibition was achieved with all of the reagents tested, only the commercially available “self-delivery” modified Accell-siRNAs (Dharmacon) produced potent and sustained in vivo gene silencing. Together, these findings highlight just how informative reliable reporter mouse models can be when assessing novel therapeutics in vivo. Using this work-flow, we developed a novel clinically-relevant topical formulation that facilitates non-invasive epidermal delivery of unmodified and “self-delivery” siRNAs. Remarkably, a sustained >40% luc2p inhibition was observed after two 1-hour treatments with Accell-siRNAs in our topical formulation. Importantly, our ability to successfully deliver siRNA molecules topically brings these novel RNAi-based therapeutics one-step closer to clinical use

    Candidate pathways and genes for prostate cancer: a meta-analysis of gene expression data

    Get PDF
    <p>Abstract</p> <p>Backgound</p> <p>The genetic mechanisms of prostate tumorigenesis remain poorly understood, but with the advent of gene expression array capabilities, we can now produce a large amount of data that can be used to explore the molecular and genetic mechanisms of prostate tumorigenesis.</p> <p>Methods</p> <p>We conducted a meta-analysis of gene expression data from 18 gene array datasets targeting transition from normal to localized prostate cancer and from localized to metastatic prostate cancer. We functionally annotated the top 500 differentially expressed genes and identified several candidate pathways associated with prostate tumorigeneses.</p> <p>Results</p> <p>We found the top differentially expressed genes to be clustered in pathways involving integrin-based cell adhesion: integrin signaling, the actin cytoskeleton, cell death, and cell motility pathways. We also found integrins themselves to be downregulated in the transition from normal prostate tissue to primary localized prostate cancer. Based on the results of this study, we developed a collagen hypothesis of prostate tumorigenesis. According to this hypothesis, the initiating event in prostate tumorigenesis is the age-related decrease in the expression of collagen genes and other genes encoding integrin ligands. This concomitant depletion of integrin ligands leads to the accumulation of ligandless integrin and activation of integrin-associated cell death. To escape integrin-associated death, cells suppress the expression of integrins, which in turn alters the actin cytoskeleton, elevates cell motility and proliferation, and disorganizes prostate histology, contributing to the histologic progression of prostate cancer and its increased metastasizing potential.</p> <p>Conclusion</p> <p>The results of this study suggest that prostate tumor progression is associated with the suppression of integrin-based cell adhesion. Suppression of integrin expression driven by integrin-mediated cell death leads to increased cell proliferation and motility and increased tumor malignancy.</p

    Visualization of plasmid delivery to keratinocytes in mouse and human epidermis

    Get PDF
    The accessibility of skin makes it an ideal target organ for nucleic acid-based therapeutics; however, effective patient-friendly delivery remains a major obstacle to clinical utility. A variety of limited and inefficient methods of delivering nucleic acids to keratinocytes have been demonstrated; further advances will require well-characterized reagents, rapid noninvasive assays of delivery, and well-developed skin model systems. Using intravital fluorescence and bioluminescence imaging and a standard set of reporter plasmids we demonstrate transfection of cells in mouse and human xenograft skin using intradermal injection and two microneedle array delivery systems. Reporter gene expression could be detected in individual keratinocytes, in real-time, in both mouse skin as well as human skin xenografts. These studies revealed that non-invasive intravital imaging can be used as a guide for developing gene delivery tools, establishing a benchmark for comparative testing of nucleic acid skin delivery technologies

    Bakteriophagenvermehrung bei höheren Temperaturen

    No full text

    Noninvasive and persistent transfollicular drug delivery system using a combination of liposomes and iontophoresis

    Get PDF
    Iontophoresis is a promising technique for enhancing transdermal administration of charged drugs. However, conventional iontophoresis is not sufficient for effective delivery of large, hydrophilic, or electrically neutral molecules. In this study, we utilized charged liposomes as carriers, focused on a transfollicular route for delivery of the liposomes, and optimized iontophoretic conditions and lipid composition for this method in both in vitro and in vivo conditions. As a result, we identified the optimum condition (lipid composition: DOTAP/EPC/Chol = 2:2:1, current supply: 0.45 mA/cm2, duration: 1 hr) for effective iontophoretic delivery of aqueous solution, which can not be transferred into the skin without charged liposomes. We also examined the pharmacological effects of iontophoresis of liposomes encapsulating insulin (INS-lipo) using a rat model of type I diabetes. Interestingly, iontophoresis of INS-lipo onto a diabetes rat skin resulted in a gradual decrease in blood glucose levels, with levels reaching 20% of initial values at 18 hr after administration. These lower blood glucose levels were maintained for up to 24 hr. Significant amount of insulin were also detected in plasma 18 hr after iontophoresis of INS-lipo. We succeeded in developing a non-invasive and persistent transfollicular drug delivery system that used a combination of liposomes and iontophoresis

    Visual prognosis better in eyes with less severe reduction of visual acuity one year after onset of Leber hereditary optic neuropathy caused by the 11,778 mutation

    No full text
    Abstract Background Patients with Leber hereditary optic neuropathy (LHON) have a progressive decrease of their visual acuity which can deteriorate to <0.1. Some patients can have a partial recovery of their vision in one or both eyes. One prognostic factor associated with a recovery of vision is an early-age onset. The purpose of this study was to determine other clinical factors that are predictive of a good visual recovery. Methods Sixty-one Japanese LHON patients, with the 11,778 mutation and a mean age of 23.1 ± 12.1 years at the onset, were studied. All patients were initially examined at an acute stage of LHON and were followed for 3 to 10 years. At 1 year after the onset, the lowest visual acuity was <0.1 in all eyes. We studied the following parameters of patients with/without a final visual acuity of ≥ 0.2: sex; heavy consumption of cigarettes and alcohol; taking idebenone; mean age at onset; mean lowest visual acuity; and distribution of the lowest and the final visual acuity. Results Fifteen (24.6%) of the 61 patients or 25 (20.5%) of the 122 eyes had a recovery of their visual acuity to ≥ 0.2. The mean age at onset of these 15 patients with visual recovery to ≥ 0.2 was 17.5 ± 7.7 years, and that of the 46 patients without visual recovery to ≥ 0.2 was 25.0 ± 12.8 years (P = 0.02, Mann-Whitney U test). The mean lowest visual acuity of the 25 eyes with visual recovery ≥ 0.2 was 0.04, and that of the 97 eyes without visual recovery to ≥ 0.2 was 0.015 (P < 0.001, Mann-Whitney U test). Fifty percent (15/30) of the eyes whose lowest visual acuity was ≥ 0.04 during 1 year after the onset had a visual recovery to ≥ 0.2, while 11% (10/92) of the eyes whose the lowest visual acuity was ≤ 0.03 had a visual recovery to ≥ 0.2 (P < 0.001, χ 2 test). There were no significant differences in the other clinical factors. Conclusion A final visual acuity of ≥ 0.2 was associated with a less severe reduction of the visual acuity at 1 year after the onset. Our findings can be used to predict the visual prognosis in LHON patients
    corecore