30 research outputs found

    Surface uplift and time-dependent seismic hazard due to fluid injection in eastern Texas

    Get PDF
    Observations that unequivocally link seismicity and wastewater injection are scarce. Here we show that wastewater injection in eastern Texas causes uplift, detectable in radar interferometric data up to >8 kilometers from the wells. Using measurements of uplift, reported injection data, and a poroelastic model, we computed the crustal strain and pore pressure. We infer that an increase of >1 megapascal in pore pressure in rocks with low compressibility triggers earthquakes, including the 4.8–moment magnitude event that occurred on 17 May 2012, the largest earthquake recorded in eastern Texas. Seismic activity increased even while injection rates declined, owing to diffusion of pore pressure from earlier periods with higher injection rates. Induced seismicity potential is suppressed where tight confining formations prevent pore pressure from propagating into crystalline basement rocks

    The 2011 Lorca earthquake slip distribution controlled by groundwater crustal unloading

    Get PDF
    Earthquake initiation, propagation and arrest are influenced by fault frictional properties(1,2) and preseismic stress(3,4). Studies of triggered and induced seismicity(5-7) can provide unique insights into this influence. However, measurements of near-field, surface ground deformation(8,9) and pre-earthquake stress conditions necessary for such studies are rare. Here, we use geodetic data to determine surface deformation associated with the M-w 5.1 earthquake that occurred in Lorca, southeast Spain, on 11 May 2011. We use an elastic dislocation model to show that earthquake nucleation and the area of main fault slip occurred at very shallow depths of 2-4 km, on a rupture plane along the Alhama de Murcia Fault. Slip extended towards the surface, across fault segments with frictional properties that changed from unstable to stable. The area of fault slip correlates well with the pattern of positive Coulomb stress change that we calculate to result from the extraction of groundwater in a nearby basin aquifer. We therefore suggest that the distribution of shallow slip during the Lorca earthquake could be controlled by crustal unloading stresses at the upper frictional transition of the seismogenic layer, induced by groundwater extraction. Our results imply that anthropogenic activities could influence how and when earthquakes occur

    Improved Real-Time Natural Hazard Monitoring Using Automated DInSAR Time Series

    Get PDF
    As part of the collaborative GeoSciFramework project, we are establising a monitoring system for the Yellowstone volcanic area that integrates multiple geodetic and seismic data sets into an advanced cyber-infrastructure framework that will enable real-time streaming data analytics and machine learning and allow us to better characterize associated long- and short-term hazards. The goal is to continuously ingest both remote sensing (GNSS, DInSAR) and ground-based (seismic, thermal and gas observations, strainmeter, tiltmeter and gravity measurements) data and query and analyse them in near-real time. In this study, we focus on DInSAR data processing and the effects from using various atmospheric corrections and real-time orbits on the automated processing and results. We find that the atmospheric correction provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) is currently the most optimal for automated DInSAR processing and that the use of real-time orbits is sufficient for the early-warning application in question. We show analysis of atmospheric corrections and using real-time orbits in a test case over the Kilauea volcanic area in Hawaii. Finally, using these findings, we present results of displacement time series in the Yellowstone area between May 2018 and October 2019, which are in good agreement with GNSS data where available. These results will contribute to a baseline model that will be the basis of a future early-warning system that will be continuously updated with new DInSAR data acquisitions

    Tidal Influence on Seismic Activity During the 2011–2013 El Hierro Volcanic Unrest

    Get PDF
    © 2020. American Geophysical Union. All Rights Reserved. The El Hierro volcanic unrest started in July 2011, with an increase in observed seismicity rates and surface deformation. After the initial onset, hypocenters migrated southward through September 2011, culminating in a submarine eruption beginning on October 10, 2011 and finishing in February 2012. The seismic activity continued, with remarkable periods of unrest through 2012 and 2013. The most significant episodes of seismic activity during this unrest are related to magma migration at depth. In this work, we compute tidal stress for each earthquake, at its hypocenter depth, and assign them a tidal stress phase angle. We have found statistically significant correlations between the occurrence of earthquakes and tidal stress phase angles, corresponding mainly to increasing tidal stress change rates. We found primarily that the magnitude of vertical and E-W horizontal tidal stress values and their changing rates with time were correlated with earthquake occurrence times. We also found that there is no correlation between tides and seismicity at times with no observed surface displacements, suggesting that tidal modulation might be related to overpressure during migration of magma. Tidal modulation changes with depth and the influence of ocean-loading tides is stronger than the influence of solid Earth tides. Our results support the hypothesis that tidal stress may modulate the seismicity during volcanic unrest, particularly during shallow depth magma migration

    Detection of volcanic unrest onset in La Palma, Canary Islands, evolution and implications

    Get PDF
    La Palma island is one of the highest potential risks in the volcanic archipelago of the Canaries and therefore it is important to carry out an in-depth study to define its state of unrest. This has been accomplished through the use of satellite radar observations and an original state-of-the-art interpretation technique. Here we show the detection of the onset of volcanic unrest on La Palma island, most likely decades before a potential eruption. We study its current evolution seeing the spatial and temporal changing nature of activity at this potentially dangerous volcano at unprecedented spatial resolutions and long time scales, providing insights into the dynamic nature of the associated volcanic hazard. The geodetic techniques employed here allow tracking of the fluid migration induced by magma injection at depth and identifying the existence of dislocation sources below Cumbre Vieja volcano which could be associated with a future flank failure. Therefore they should continue being monitored using these and other techniques. The results have implications for the monitoring of steep-sided volcanoes at oceanic islands

    Real Time Tracking of Magmatic Intrusions by means of Ground Deformation Modeling during Volcanic Crises

    Get PDF
    Volcano observatories provide near real-time information and, ultimately, forecasts about volcano activity. For this reason, multiple physical and chemical parameters are continuously monitored. Here, we present a new method to efficiently estimate the location and evolution of magmatic sources based on a stream of real-time surface deformation data, such as High-Rate GPS, and a free-geometry magmatic source model. The tool allows tracking inflation and deflation sources in time, providing estimates of where a volcano might erupt, which is important in understanding an on-going crisis. We show a successful simulated application to the pre-eruptive period of May 2008, at Mount Etna (Italy). The proposed methodology is able to track the fast dynamics of the magma migration by inverting the real-time data within seconds. This general method is suitable for integration in any volcano observatory. The method provides first order unsupervised and realistic estimates of the locations of magmatic sources and of potential eruption sites, information that is especially important for civil protection purposes

    Shallow Hydrothermal Pressurization before the 2010 Eruption of Mount Sinabung Volcano, Indonesia, Observed by use of ALOS Satellite Radar Interferometry

    No full text
    Ground deformation in volcanic regions can be a precursor to resumption of activity. Volcanic eruptions are typically brief periods of activity punctuating very long inter-eruptive periods. This makes hazard evaluation a difficult task for volcanoes with low-recurrence eruptive activity, which often are poorly monitored. As a result, analysis of inter-eruptive periods by use of remote sensing techniques can provide important information on precursory activity and improve volcano hazard assessment. In August-September 2010 Mt Sinabung, Indonesia, reawakened after at least 400 years of dormancy. The ground deformation before this eruption was investigated by use of differential interferometric synthetic aperture radar data obtained from Japanese ALOS-PALSAR radar imagery between 05 January 2007 and 31 August 2010. Results from InSAR time series processing detected significant ground deformation (subsidence) at several locations on the Karo plateau, and uplift in the summit area of Mt Sinabung. The persistent scatterers density obtained by use of ALOS data is sufficient to enable extraction of temporal and spatial patterns of the deformation. The surface deformation at the summit can be modeled by using a spherical point-source model. Source data are consistent with a very shallow (hydrothermal) reservoir, with a linear increase in overpressure before the 2010 Mt Sinabung eruption. Hydrothermal origin is consistent with seismicity, tiltmeters, and analysis of ash products collected during and after the 2010 eruption. These results support the potential of L-band interferometry for hazard assessment in poorly monitored and highly vegetated volcanic areas and also indicate that hazard assessment for Indonesian volcanoes could potentially be improved by identification of precursory (inter-eruptive) uplift periods

    Three-dimensional indirect boundary element method for deformation and gravity changes in volcanic areas: Application to Teide volcano (Tenerife, Canary Islands)

    No full text
    Most deformation models of volcanoes assume that the Earth is a linear, elastic, isotropic and homogeneous half-space, although some volcanic areas are associated with significant relief. We investigate the effects of topography on surface deformation and gravity changes caused by a magma intrusion in the Earth's crust. A three-dimensional (3-D) indirect boundary element method (IBEM) that incorporates realistic topographic features is developed in order to perform this analysis. Our results show that the topography alters both the magnitude and pattern of the deformation and gravity signal. As an example of realistic topography, we consider a spherical source of dilatation located at 4 km depth below Teide volcano summit (Tenerife, Canary Islands) in order to simulate the deformation and gravity changes that could be observed at Tenerife if a hypothetical intrusion occurred in the volcanic system. This approach gives a picture of the 3-D topographic effect at Teide that can provide insight in order to improve the geodetic monitoring of the volcano
    corecore