159 research outputs found

    Performance of Machine Learning Aided Fluid Antenna System with Improved Spatial Correlation Model

    Get PDF
    Fluid antenna has emerged as a new antenna technology that enables software-controllable position reconfigurability for great diversity and multiplexing benefits. The performance of fluid antenna systems has recently been studied for single and multiuser environments adopting a generalized spatial correlation model that accounts for the channel correlation between the ports of the fluid antenna. The recent work [1] further devised machine learning algorithms to select the best port of fluid antenna in a more practical setting in which only a small number of ports is observable in the selection process, and found that extraordinary outage probability performance can be obtained. However, there is a concern of how the spatial correlation parameters are set to reflect the actual correlation structure for accurately evaluating the system performance. In this paper, the method in [2] is used to set the correlation parameter so that the model can accurately characterize the correlation amongst the ports of a fluid antenna in a given space. This paper revisits the port selection problem for single-user fluid antenna system where learning-based algorithms are employed to select the best port when only a small subset of the channel ports are known. The new results demonstrate that the impact of spatial correlation on the performance becomes more pronounced but the machine learning aided fluid antenna system is still able to match the performance of maximum ratio combining (MRC) system with many uncorrelated antennas

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) suppresses spheroids attachment on endometrial epithelial cells through the down-regulation of the Wnt-signaling pathway

    Get PDF
    The environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) affects embryo development, implantation and fertility in humans. The underlying molecular mechanism by which TCDD suppresses implantation remains largely unknown. We used the trophoblastic spheroids (embryo surrogate)-endometrial cells co-culture assay to study the attachment of trophoblastic spheroids (BeWo and Jeg-3) onto the endometrial epithelial (RL95-2 and Ishikawa) cells. TCDD dose-dependently induced cytochrome P450 1A1 (Cyp1A1) expression in trophoblastic and endometrial epithelial cells. Moreover, TCDD at 1 and 10. nM suppressed β-catenin (a Wnt-signaling molecule) and E-cadherin expression, as well as spheroids attachment onto endometrial cells. Interestingly, activation of the canonical Wnt-signaling pathway via Wnt3a or lithium chloride reverted the suppressive effect of TCDD on β-catenin and E-cadherin expressions in the BeWo and RL95-2 cells, and restored the spheroids attachment rate to be comparable to the untreated controls. Taken together, TCDD induces Cyp1A1 expression, modulates the Wnt-signaling pathway and suppresses spheroids attachment onto endometrial cells. © 2011 Elsevier Inc.postprin

    Excessive ovarian stimulation up-regulates the Wnt-signaling molecule DKK1 in human endometrium and may affect implantation: An in vitro co-culture study

    Get PDF
    Background: High serum estradiol (E2) levels following ovarian stimulation lead to reduced implantation and pregnancy rates, yet the underlying mechanisms remain unknown. We investigated if aberrant expression of genes in the Wnt-signaling pathway may be involved. Methods: Microarray and real-time PCR analysis were performed to analyze gene expression profiles of endometrial samples taken at day hCG + 7 in stimulated cycles, and days LH + 7 and LH + 10 in natural cycles. Expression of several Wnt-signaling transcripts, including Dickkopf homolog 1 (DKK1), DKK2 and secreted frizzled-related protein 4 (sFRP4), was analyzed throughout the menstrual cycle. JAr spheroid/Ishikawa endometrial cell co-culture experiments were established to study effects of DKK1 on spheroid attachment in vitro. Results: We identified 351 differentially expressed genes. Endometrial samples taken at hCG + 7 had similar expression profiles to those at LH + 10. DKK1 transcripts were up-regulated and DKK2 and sFRP4 were down-regulated in the stimulated compared with LH + 7 group (all P < 0.05). DKK1 transcripts were low in proliferative phase (PS) and increased in late-secretory phase (LS, P < 0.05), although DKK2 peaked in mid-secretory phase (P < 0.05). sFRP4 transcripts were high in PS. Treatment of spheroid with recombinant human DKK-1 protein dose-dependently suppressed (P < 0.05 versus control) spheroids attachment onto endometrial cells (associated with decreased-catenin protein): this suppression was nullified by anti-DKK1 antibody.CONCLUSIONGene expression patterns in stimulated cycles resembled those of LS in natural cycles, when the implantation window is about to close, suggesting high serum E2 and/or progesterone concentrations may advance endometrial development, altering the implantation window and possibly decreasing pregnancy rate. Aberrant expression of DKK1 might impair embryo attachment and implantation in vivo.postprin

    Bioactive Compounds of Rambutan (Nephelium lappaceum L.)

    Get PDF
    Rambutan, a widely popular tropical fruit encompasses rich amount of bioactive compounds. All parts of this plant (leaves, bark, root, fruits, fruit skin, pulp and seeds) finds traditional usage, and are linked with high therapeutic values. Rambutan fruits parts like that of peel, pulp and seeds have been scientifically investigated in-depth and is reported to encompass high amounts of bioactive compounds (such as polyphenol, flavonoid, alkaloid, essential mineral, dietary fiber). These compounds contribute towards antioxidant, antimicrobial, anticancer, antidiabetic and anti-obesity activities. However, literature pertaining towards potential industrial applications (food, cosmetics, pharmaceutical) of rambutan fruits are limited. In the present chapter, it is intended to document some of the interesting research themes published on rambutan fruits, and identify the existing gaps to open up arena for future research work.This chapter theme is based on our ongoing project—VALORTECH, which has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 810630

    Are Trp53 rescue of Brca1 embryonic lethality and Trp53/Brca1 breast cancer association related?

    Get PDF
    Brca1 is involved in multiple biological pathways including DNA damage repair, transcriptional regulation, and cell-cycle progression. A complex pattern of interactions of Brca1 with Trp53 has also emerged. Xu and coworkers found that haploid loss of Trp53 significantly reduces the embryonic lethality observed in mice with a homozygous in-frame deletion of Brca1 exon 11. They report that widespread apoptosis correlates with the embryonic lethality resulting from this homozygous Δ11 Brca1 mutation. A mechanism responsible for Brca1-associated carcinogenesis is proposed. These experiments extend our knowledge of a complex Brca1/Trp53 relationship. However, the precise mechanisms through which Brca1 interacts with Trp53 to suppress mammary tumor formation have yet to be elucidated

    Why are mineralocorticoid receptor antagonists cardioprotective?

    Get PDF
    Two clinical trials, the Randomized ALdosterone Evaluation Study (RALES) and the EPlerenone HEart failure and SUrvival Study (EPHESUS), have recently shown that mineralocorticoid receptor (MR) antagonists reduce mortality in patients with heart failure on top of ACE inhibition. This effect could not be attributed solely to blockade of the renal MR-mediated effects on blood pressure, and it has therefore been proposed that aldosterone, the endogenous MR agonist, also acts extrarenally, in particular in the heart. Indeed, MR are present in cardiac tissue, and possibly aldosterone synthesis occurs in the heart. This review critically addresses the following questions: (1) is aldosterone synthesized at cardiac tissue sites, (2) what agonist stimulates cardiac MR normally, and (3) what effects are mediated by aldosterone/MR in the heart that could explain the beneficial effects of MR blockade in heart failure? Conclusions are that most, if not all, of cardiac aldosterone originates in the circulation (i.e., is of adrenal origin), and that glucocorticoids, in addition to aldosterone, may serve as the endogenous agonist of cardiac MR. MR-mediated effects in the heart include effects on endothelial function, cardiac fibrosis and hypertrophy, oxidative stress, cardiac inotropy, coronary flow, and arrhythmias. Some of these effects occur via or in synergy with angiotensin II, and involve a non-MR-mediated mechanism. This raises the possibility that aldosterone synthase inhibitors might exert beneficial effects on top of MR blockade

    Production of phi mesons at mid-rapidity in sqrt(s_NN) = 200 GeV Au+Au collisions at RHIC

    Get PDF
    We present the first results of meson production in the K^+K^- decay channel from Au+Au collisions at sqrt(s_NN) = 200 GeV as measured at mid-rapidity by the PHENIX detector at RHIC. Precision resonance centroid and width values are extracted as a function of collision centrality. No significant variation from the PDG accepted values is observed. The transverse mass spectra are fitted with a linear exponential function for which the derived inverse slope parameter is seen to be constant as a function of centrality. These data are also fitted by a hydrodynamic model with the result that the freeze-out temperature and the expansion velocity values are consistent with the values previously derived from fitting single hadron inclusive data. As a function of transverse momentum the collisions scaled peripheral.to.central yield ratio RCP for the is comparable to that of pions rather than that of protons. This result lends support to theoretical models which distinguish between baryons and mesons instead of particle mass for explaining the anomalous proton yield.Comment: 326 authors, 24 pages text, 23 figures, 6 tables, RevTeX 4. To be submitted to Physical Review C as a regular article. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Variable Carbon Catabolism among Salmonella enterica Serovar Typhi Isolates

    Get PDF
    BACKGROUND: Salmonella enterica serovar Typhi (S. Typhi) is strictly a human intracellular pathogen. It causes acute systemic (typhoid fever) and chronic infections that result in long-term asymptomatic human carriage. S. Typhi displays diverse disease manifestations in human infection and exhibits high clonality. The principal factors underlying the unique lifestyle of S. Typhi in its human host during acute and chronic infections remain largely unknown and are therefore the main objective of this study. METHODOLOGY/PRINCIPAL FINDINGS: To obtain insight into the intracellular lifestyle of S. Typhi, a high-throughput phenotypic microarray was employed to characterise the catabolic capacity of 190 carbon sources in S. Typhi strains. The success of this study lies in the carefully selected library of S. Typhi strains, including strains from two geographically distinct areas of typhoid endemicity, an asymptomatic human carrier, clinical stools and blood samples and sewage-contaminated rivers. An extremely low carbon catabolic capacity (27% of 190 carbon substrates) was observed among the strains. The carbon catabolic profiles appeared to suggest that S. Typhi strains survived well on carbon subtrates that are found abundantly in the human body but not in others. The strains could not utilise plant-associated carbon substrates. In addition, α-glycerolphosphate, glycerol, L-serine, pyruvate and lactate served as better carbon sources to monosaccharides in the S. Typhi strains tested. CONCLUSION: The carbon catabolic profiles suggest that S. Typhi could survive and persist well in the nutrient depleted metabolic niches in the human host but not in the environment outside of the host. These findings serve as caveats for future studies to understand how carbon catabolism relates to the pathogenesis and transmission of this pathogen
    corecore