1,588 research outputs found

    Pulse of inflammatory proteins in the pregnant uterus of European polecats (Mustela putorius) leading to the time of implantation

    Get PDF
    Uterine secretory proteins protect the uterus and conceptuses against infection, facilitate implantation, control cellular damage resulting from implantation, and supply pre-implantation embryos with nutrients. Unlike in humans, the early conceptus of the European polecat (Mustela putorius; ferret) grows and develops free in the uterus until implanting at about 12 days after mating. We found that the proteins appearing in polecat uteri changed dramatically with time leading to implantation. Several of these proteins have also been found in pregnant uteri of other eutherian mammals. However, we found a combination of two increasingly abundant proteins that have not been recorded before in pre-placentation uteri. First, the broad-spectrum proteinase inhibitor α2-macroglobulin rose to dominate the protein profile by the time of implantation. Its functions may be to limit damage caused by the release of proteinases during implantation or infection, and to control other processes around sites of implantation. Second, lipocalin-1 (also known as tear lipocalin) also increased substantially in concentration. This protein has not previously been recorded as a uterine secretion in pregnancy in any species. If polecat lipocalin-1 has similar biological properties to that of humans, then it may have a combined function in antimicrobial protection and transporting or scavenging lipids. The changes in the uterine secretory protein repertoire of European polecats is therefore unusual, and may be representative of pre-placentation supportive uterine secretions in mustelids (otters, weasels, badgers, mink, wolverines) in general

    Impact of Watermelon bud necrosis virus (WBNV) infected plants on the volatile emission pattern in cowpea plants

    Get PDF
    Pathogens, including tospoviruses, are known to manipulate the behaviour of vectors after virus acquisition by plants to enhance virus transmission. Furthermore, as recently proven in the maize chlorotic mottle virus pathosystem, the vector's choice for virus-infected plants can change to a preference for noninfected plants after virus uptake by the vector. A similar trend was observed in the cowpea - Watermelon Bud Necrosis Virus (WBNV) - Thrips palmi (Karny) pathosystem. Similarly, in the no-choice bioassay, viruliferous T.palmi (carrying WBNV) settled preferentially more on healthy cowpea plants (56%) compared to virus-infected plants (47.3%), whereas non-viruliferous T.palmi settled preferentially more on WBNV infected (58.67%) cowpea plants compared to healthy plants (44%). The changes in preference of thrips towards host plants before and after virus acquisition may be due to the change of volatile cues. This study looked at the headspace volatile composition of healthy and WBNV-infected cowpea plants that attract thrips. Furthermore, the volatile analysis revealed that 1, 2-Propanediamine (0.62%) and Tuaminoheptane (0.55%) from healthy cowpea plants, as well as Tetradecane (0.35%) from WBNV-infected cowpea plants, both have a higher area percent than other volatiles. The amine (53%) and hydrocarbon (69%) groups of volatile organic compounds make up the majority of host volatiles found in healthy and virus-infected plants. The increased contact rates of viruliferous and non-viruliferous T.palmi towards healthy and WBNV-infected host plants could enhance virus transmission if thrips feed on them and acquire the pathogen prior to dispersal and the recorded host volatiles might be useful in vector management in future

    Optical properties of pyrochlore oxide Pb2Ru2O7−ήPb_{2}Ru_{2}O_{7-{\delta}}

    Full text link
    We present optical conductivity spectra for Pb2Ru2O7−ήPb_{2}Ru_{2}O_{7-{\delta}} single crystal at different temperatures. Among reported pyrochlore ruthenates, this compound exhibits metallic behavior in a wide temperature range and has the least resistivity. At low frequencies, the optical spectra show typical Drude responses, but with a knee feature around 1000 \cm. Above 20000 \cm, a broad absorption feature is observed. Our analysis suggests that the low frequency responses can be understood from two Drude components arising from the partially filled Ru t2gt_{2g} bands with different plasma frequencies and scattering rates. The high frequency broad absorption may be contributed by two interband transitions: from occupied Ru t2gt_{2g} states to empty ege_{g} bands and from the fully filled O 2p bands to unoccupied Ru t2gt_{2g} states.Comment: 4 pages, 6 figure

    A Comparative Analysis of Age-Stage Two Sex Life Tables in Distinct Forms of Callosobruchus maculatus (F.): Insights into Population Dynamics and Reproductive Strategies

    Get PDF
    Callosobruchus maculatus, the bean weevil, is a fascinating insect that showcases remarkable adaptations for survival. Found in tropical and subtropical regions, it has become a global pest due to its adaptability and hitchhiking capabilities, causing substantial grain losses. This small beetle, part of the Chrysomelidae family, serves as a valuable model organism in entomology and agricultural research. One of the key aspects of Callosobruchus maculatus that captures the attention of scientists is its dichotomy between active and inactive forms. These two forms represent distinct survival strategies employed by the beetle to navigate its ever-changing environment. The present study provides a comprehensive overview of the study on Callosobruchus maculatus, highlighting the two distinct forms of the species, their adaptations, and the significance of understanding their lifetable parameters. It emphasizes the ecological, practical, and research-oriented implications of this study, ranging from ecological insights to pest management strategies and the optimization of mass multiplication protocols. These forms exhibited notable differences in various life history parameters and survival characteristics. Flightless-inactive females had longer preoviposition and oviposition period and laid a significantly higher average of eggs per female with higher reproduction potential. Female fecundity (eggs/female) was much lower in the flight-active form (18.6) than in the flightless-inactive form (84.10) and maintained constant survival rate. Life expectancy values were generally lower for the flightless-inactive form compared to the flight-active form across different stages and sexes. Both males and females in the flight-active form exhibited a consistent and relatively high life expectancy, with a 100% chance of survival throughout all age intervals. Overall, these findings provide a comprehensive understanding of the differences in life history traits, reproductive strategies, and survival patterns between the flight-active and flightless-inactive forms of Callosobruchus beetles in a controlled laboratory environment

    Life cycle and morphometry of Rugose spiraling whitefly, Aleyrodicus rugioperculatus Martin (Hemiptera: Aleyrodidae) on coconut

    Get PDF
    The present study investigated the biology and morphometric analysis of rugose spiralling whitefly (RSW), Aleyrodicus rugioperculatus on coconut under mini net house condition at Department of Agricultural Entomology, Tamil Nadu Agricultural University-Coimbatore during 2019-2020. The biology of rugose spiralling whitefly was studied by clip cage method and morphometrics were done using Leica image analyser. Total lifecycle of rugose spiraling whitefly was 56.23 ± 2.20 days. Developmental period of egg, nymphal, pupal and adult period was 8.47 ± 0.26, 17.46 ± 0.76, 10.30 ± 0.29 and 20.00 ± 1.00 days, respectively. In morphometrics, Length and width of egg (0.31 ± 0.01 mm and 0.11± 0.02 mm), nymphal (0.94 ± 0.01 mm and 0.82 ± 0.01 mm), pupal (1.23 ± 0.01 mm and 1.00 ± 0.01 mm) was recorded. A nymphal parasitoid, Encarsia guadeloupae can be potential natural enemy for effective management of rugose spiraling whitefly.

    Heat-kernels and functional determinants on the generalized cone

    Get PDF
    We consider zeta functions and heat-kernel expansions on the bounded, generalized cone in arbitrary dimensions using an improved calculational technique. The specific case of a global monopole is analysed in detail and some restrictions thereby placed on the A5/2A_{5/2} coefficient. The computation of functional determinants is also addressed. General formulas are given and known results are incidentally, and rapidly, reproduced.Comment: 26p,LaTeX.(Cosmetic changes and eqns (9.8),(11.2) corrected.

    Studies on the relationship of weather on Fall armyworm damage in maize (Zea mays L.) under different growing environments

    Get PDF
    Fall armyworm is a recently occurring invasive pest in India, the most important defoliator causing drastic damage to maize production. Hence, the present study aimed to understand the temporal infestation level of Fall armyworms on maize (Zea mays L.) with weather patterns. Field experiments were conducted during Summer (February-May) and Rainy seasons, 2022 (August-December) at Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore. Three different growing environments (GE1, GE2 and GE3) were created by providing staggered sowing. Regression models were developed for per cent leaf damage against three-days lagged (LT3) and seven-day lagged (LT7) weather variables. Results showed that irrespective of growing environments, weather variables showed negative correlation (Tmax: r = -0.57, -0.81*, -0.31; SSH: -0.30, -0.48, -0.39; Tmean: -0.49, -0.23, -0.30; and SR: -0.48, -0.94*, -0.40) during summer season whereas same variables (i.e Tmax =0.62*, 0.41, 0.33; SSH = 0.09, 0.68*, 0.24; Tmean = 0.29, 0.32, 0.44; and SR=0.13, 0 .67*, 0.26 ) showed a positive correlation with PLD. Rainfall exhibits positive relation (0.06, 0.54, 0.53) and negative correlation (-0.64*, -0.10, -0.02) during summer and rainy season, respectively. Among the regression models, LT7 model had higher R2 (0.65 and 0.76) than LT3 (0.57 and 0.68) during summer and rainy seasons, respectively. These models had good regression values of 0.56 and 0.70 during Rainy and Summer, respectively. It was concluded that Tmax (32.9 °C), Tmin (23.7 °C), Tmean (28.3 °C), RH-I (85.6%), RH-II (56.4%), SSH (4.1), SR (274.6 cal cm-2 m-2), afternoon cloud cover (4.8 okta) and weekly total rainfall (10.2 mm) were very conducive for the greater leaf damage

    Finite-temperature scalar fields and the cosmological constant in an Einstein universe

    Get PDF
    We study the back reaction effect of massless minimally coupled scalar field at finite temperatures in the background of Einstein universe. Substituting for the vacuum expectation value of the components of the energy-momentum tensor on the RHS of the Einstein equation, we deduce a relationship between the radius of the universe and its temperature. This relationship exhibit a maximum temperature, below the Planck scale, at which the system changes its behaviour drastically. The results are compared with the case of a conformally coupled field. An investigation into the values of the cosmological constant exhibit a remarkable difference between the conformally coupled case and the minimally coupled one.Comment: 7 pages, 2 figure

    Finite element study of the effect of particle interaction on the energy storage density of composite dielectrics

    Get PDF
    Finite element methods can be used to study the effect of microstructure on the electrical properties of dielectric materials. These tools are utilized here to study particle interaction in composite dielectrics. The orientation and alignment of particles with each other and the applied potential difference are shown to have varying effects on the electrical breakdown strength of the composite and consequently the energy storage density. Due to an increased electrical field magnitude in the polymer matrix between particles. This increased electric field may initiate electrical breakdown in the polymer at a lower applied potential difference than would be expected for the pure polymer adversely affecting the energy storage density of dielectric composites

    Predicting the energy storage density in poly(methyl methacrylate)/methyl ammonium lead iodide composites

    Get PDF
    In high-energy density pulsed power capacitors, high permittivity particles are dispersed within a high breakdown strength polymer matrix. In theory, such composites should be able to achieve higher volumetric energy densities than is possible with either of the individual constituents. CH3NH3PbI3 (MALI) has a perovskite structure and may be fabricated at room temperature using a mechanosynthesis route in ethanol. In this study, MALI is used to form a dielectric composite with poly(methyl methacrylate) (PMMA) used as the matrix. Theoretical models are used to predict composite permittivity values that are compared to experimental values. Finite element modeling is used to simulate their effective permittivity and, beyond what the theoretical models can achieve, predicts their energy storage capabilities by analyzing electric field intensification. The simulations show increasing energy storage capability with penetration of MALI, but this is limited experimentally by their mixing capability
    • 

    corecore