974 research outputs found

    A Bayesian model selection approach to mediation analysis.

    Get PDF
    Genetic studies often seek to establish a causal chain of events originating from genetic variation through to molecular and clinical phenotypes. When multiple phenotypes share a common genetic association, one phenotype may act as an intermediate for the genetic effects on the other. Alternatively, the phenotypes may be causally unrelated but share genetic loci. Mediation analysis represents a class of causal inference approaches used to determine which of these scenarios is most plausible. We have developed a general approach to mediation analysis based on Bayesian model selection and have implemented it in an R package, bmediatR. Bayesian model selection provides a flexible framework that can be tailored to different analyses. Our approach can incorporate prior information about the likelihood of models and the strength of causal effects. It can also accommodate multiple genetic variants or multi-state haplotypes. Our approach reports posterior probabilities that can be useful in interpreting uncertainty among competing models. We compared bmediatR with other popular methods, including the Sobel test, Mendelian randomization, and Bayesian network analysis using simulated data. We found that bmediatR performed as well or better than these alternatives in most scenarios. We applied bmediatR to proteome data from Diversity Outbred (DO) mice, a multi-parent population, and demonstrate the power of mediation with multi-state haplotypes. We also applied bmediatR to data from human cell lines to identify transcripts that are mediated through or are expressed independently from local chromatin accessibility. We demonstrate that Bayesian model selection provides a powerful and versatile approach to identify causal relationships in genetic studies using model organism or human data

    Physicians' Perceptions of Factors Influencing Adherence to Antibiotic Prophylaxis in Children with Sickle Cell Disease

    Get PDF
    Background: Children with sickle cell disease (SCD) aged Staphylococcus pneumoniae and Haemophilus influenzae due to the inability of their spleen to protect against infection

    Factors Associated with the Diversification of the Gut Microbial Communities within Chimpanzees from Gombe National Park.

    Get PDF
    The gastrointestinal tract harbors large and diverse populations of bacteria that vary among individuals and within individuals over time. Numerous internal and external factors can influence the contents of these microbial communities, including diet, geography, physiology, and the extent of contact among hosts. To investigate the contributions of such factors to the variation and changes in gut microbial communities, we analyzed the distal gut microbiota of individual chimpanzees from two communities in Gombe National Park, Tanzania. These samples, which were derived from 35 chimpanzees, many of whom have been monitored for multiple years, provide an unusually comprehensive longitudinal depth for individuals of known genetic relationships. Although the composition of the great-ape microbiota has been shown to codiversify with host species, indicating that host genetics and phylogeny have played a major role in its differentiation over evolutionary timescales, the geneaological relationships of individual chimpanzees did not coincide with the similarity in their gut microbial communities. However, the inhabitants from adjacent chimpanzee communities could be distinguished based on the contents of their gut microbiota. Despite the broad similarity of community members, as would be expected from shared diet or interactions, long-term immigrants to a community often harbored the most distinctive gut microbiota, suggesting that individuals retain hallmarks of their previous gut microbial communities for extended periods. This pattern was reinforced in several chimpanzees sampled over long temporal scales, in which the major constituents of the gut microbiota were maintained for nearly a decade

    Analysis of Benefit of Intensive Care Unit Transfer for Deteriorating Ward Patients: A Patient-Centered Approach to Clinical Evaluation

    Get PDF
    Importance It is unknown which deteriorating ward patients benefit from intensive care unit (ICU) transfer. Objectives To use an instrumental variable (IV) method that assesses heterogeneity and to evaluate estimates of person-centered treatment effects of ICU transfer and 28-day hospital mortality by age and illness severity. Design, Setting, and Participants An analysis of a prospective cohort study from November 1, 2010, to December 31, 2011. The dates of this analysis were June 1, 2017, to June 30, 2018. The setting was a multicenter study of 49 UK National Health Service hospitals. Participants were 9192 deteriorating ward patients assessed for ICU transfer (4596 matched pairs). The study matched on baseline characteristics to strengthen the IV and to balance observed confounders between the comparison groups. Exposures Transfer to the ICU or continued care on general wards. Main Outcomes and Measures Mortality at 28 days (primary outcome) and 90 days. To address unobserved confounding, ICU bed availability was the IV for whether or not a patient was transferred. The study used the IV approach to evaluate estimates of treatment effect of ICU transfer and mortality according to age and physiological severity alone and in combination. Results Both comparison groups included 4596 patients. In the group assessed with “many” ICU beds available (median, 7), 52.8% were male, and the mean (SD) age was 65.2 (17.7) years; in the group assessed with “few” ICU beds available (median, 2), 53.3% were male, and the mean (SD) age was 65.0 (17.3) years. The overall 28-day mortality estimates were 23.2% (2090 predicted deaths) if all of the matched patients were transferred vs 28.1% (2534 predicted deaths) if none of the matched patients were transferred, an estimated risk difference of −4.9% (95% CI, −26.4% to 16.6%). The estimated effects of ICU transfer differed by age and by physiological severity according to the National Early Warning Score (NEWS): the absolute risk differences in 28-day mortality after ICU transfer ranged from 7.7% (95% CI, −5.5% to 21.0%) for ages 18 to 23 years to −5.0% (95% CI -26.5% to 16.6%) for age 78 to 83 years and ranged from 3.7% (95% CI, −12.1% to 19.5%) for NEWS of 0 to −25.4% (95% CI, −50.6% to −0.2%) for NEWS of 19. The absolute risk differences for elderly patients (≥75 years) were −11.6% (95% CI, −39.0% to 15.8%) for those with high NEWS (>6), −4.8% (95% CI, −30.5% to 20.9%) for those with moderate NEWS (5-6), and −1.0% (95% CI, −24.8% to 22.8%) for those with low NEWS (<5). The corresponding estimates for subgroups of younger patients (<75 years) were −8.4% (95% CI, −31.0% to 14.1%), −2.1% (95% CI, −21.1% to 16.9%), and 1.4% (95% CI, −14.5% to 17.4%). Conclusions and Relevance This study using a this person-centered IV approach found that the benefits of ICU care may increase among patients at high levels of baseline physiological severity across different age groups, especially among elderly patients

    Selection Enhanced Estimates of Marker Effects on Means and Variances of Beef Tenderness

    Get PDF
    Historic surveys of retail beef have identified beef tenderness as a critical issue to consumer acceptability of beef and suggested continued investigation of pre-harvest and postharvest interventions to improve beef tenderness (Morgan et al., 1991). Koohmaraie (1996) identified the protease μ-calpain (CAPN1) and its inhibitor calpastatin (CAST) as major factors affecting post-mortem tenderization in meat. Genetic markers in CAPN1 (Page et al., 2002; White et al., 2005) and CAST (Casas et al., 2006; Morris et al., 2006) are commercially available to beef producers. However, early studies evaluating these markers had low frequency of rare homozygote animals and occasionally ignored those animals from analysis (White et al., 2005; Morris et al., 2006) – removing the opportunity to evaluate mode of inheritance (additive or dominance) for a genetic marker. Therefore, selection was used in 2 populations (Angus and U.S. Meat Animal Research Center III – ¼ Angus, ¼ Hereford, ¼ Red Poll, and ¼ Pinzgauer composite) to equalize the allele frequency of CAPN1 haplotypes and CAST genotypes to enhance estimates for slice shear force (SSF) of: 1) effect size, 2) mode of inheritance, and 3) interaction between CAPN1 and CAST (Tait et al., 2014a; Tait et al., 2014b). Furthermore, these studies evaluated the potential for genotype specific residual variances and found these models to fit significantly better than single residual variance models for CAST genotypes

    PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: How single nucleotide polymorphism chips will advance our knowledge of factors controlling puberty and aid in selecting replacement beef females

    Get PDF
    The promise of genomic selection is accurate prediction of the genetic potential of animals from their genotypes. Simple DNA tests might replace low-accuracy predictions for expensive or lowly heritable measures of puberty and fertility based on performance and pedigree. Knowing with some certainty which DNA variants (e.g., SNP) affect puberty and fertility is the best way to fulfill the promise. Several SNP from the BovineSNP50 assay have tentatively been associated with reproductive traits including age at puberty, antral follicle count, and pregnancy observed on different sets of heifers. However, sample sizes are too small and SNP density is too sparse to definitively determine genomic regions harboring causal variants affecting reproductive success. Additionally, associations between individual SNP and similar phenotypes are inconsistent across data sets, and genomic predictions do not appear to be globally applicable to cattle of different breeds. Discrepancies may be a result of different QTL segregating in the sampled populations, differences in linkage disequilibrium (LD) patterns such that the same SNP are not correlated with the same QTL, and spurious correlations with phenotype. Several approaches can be used independently or in combination to improve detection of genomic factors affecting heifer puberty and fertility. Larger samples and denser SNP will increase power to detect real associations with SNP having more consistent LD with underlying QTL. Meta- analysis combining results from different studies can also be used to effectively increase sample size. High-density genotyping with heifers pooled by pregnancy status or early and late puberty can be a cost-effective means to sample large numbers. Networks of genes, implicated by associations with multiple traits correlated with puberty and fertility, could provide insight into the complex nature of these traits, especially if corroborated by functional annotation, established gene interaction pathways, and transcript expression. Example analyses are provided to demonstrate how integrating information about gene function and regulation with statistical associations from whole-genome SNP genotyping assays might enhance knowledge of genomic mechanisms affecting puberty and fertility, enabling reliable DNA tests to guide heifer selection decisions

    A Bayesian model selection approach to mediation analysis

    Get PDF
    Genetic studies often seek to establish a causal chain of events originating from genetic variation through to molecular and clinical phenotypes. When multiple phenotypes share a common genetic association, one phenotype may act as an intermediate for the genetic effects on the other. Alternatively, the phenotypes may be causally unrelated but share genetic loci. Mediation analysis represents a class of causal inference approaches used to determine which of these scenarios is most plausible. We have developed a general approach to mediation analysis based on Bayesian model selection and have implemented it in an R package, bmediatR. Bayesian model selection provides a flexible framework that can be tailored to different analyses. Our approach can incorporate prior information about the likelihood of models and the strength of causal effects. It can also accommodate multiple genetic variants or multi-state haplotypes. Our approach reports posterior probabilities that can be useful in interpreting uncertainty among competing models. We compared bmediatR with other popular methods, including the Sobel test, Mendelian randomization, and Bayesian network analysis using simulated data. We found that bmediatR performed as well or better than these alternatives in most scenarios. We applied bmediatR to proteome data from Diversity Outbred (DO) mice, a multi-parent population, and demonstrate the power of mediation with multi-state haplotypes. We also applied bmediatR to data from human cell lines to identify transcripts that are mediated through or are expressed independently from local chromatin accessibility. We demonstrate that Bayesian model selection provides a powerful and versatile approach to identify causal relationships in genetic studies using model organism or human data

    Genetic variation in Glutathione S-Transferase Omega-1, Arsenic Methyltransferase and Methylene-tetrahydrofolate Reductase, arsenic exposure and bladder cancer: a case–control study

    Get PDF
    Abstract Background Ingestion of groundwater with high concentrations of inorganic arsenic has been linked to adverse health outcomes, including bladder cancer, however studies have not consistently observed any elevation in risk at lower concentrations. Genetic variability in the metabolism and clearance of arsenic is an important consideration in any investigation of its potential health risks. Therefore, we examined the association between genes thought to play a role in the metabolism of arsenic and bladder cancer. Methods Single nucleotide polymorphisms (SNPs) in GSTO-1, As3MT and MTHFR were genotyped using DNA from 219 bladder cancer cases and 273 controls participating in a case–control study in Southeastern Michigan and exposed to low to moderate (\u3c50 μg/L) levels of arsenic in their drinking water. A time-weighted measure of arsenic exposure was constructed using measures from household water samples combined with past residential history, geocoded and merged with archived arsenic data predicted from multiple resources. Results While no single SNP in As3MT was significantly associated with bladder cancer overall, several SNPs were associated with bladder cancer among those exposed to higher arsenic levels. Individuals with one or more copies of the C allele in rs11191439 (the Met287Thr polymorphism) had an elevated risk of bladder cancer (OR = 1.17; 95% CI = 1.04-1.32 per 1 μg/L increase in average exposure). However, no association was observed between average arsenic exposure and bladder cancer among TT homozygotes in the same SNP. Bladder cancer cases were also 60% less likely to be homozygotes for the A allele in rs1476413 in MTHFR compared to controls (OR = 0.40; 95% CI = 0.18-0.88). Conclusions Variation in As3MT and MTHFR is associated with bladder cancer among those exposed to relatively low concentrations of inorganic arsenic. Further investigation is warranted to confirm these findings

    Genetic variation in Glutathione S-Transferase Omega-1, Arsenic Methyltransferase and Methylene-tetrahydrofolate Reductase, arsenic exposure and bladder cancer: a case–control study

    Full text link
    Abstract Background Ingestion of groundwater with high concentrations of inorganic arsenic has been linked to adverse health outcomes, including bladder cancer, however studies have not consistently observed any elevation in risk at lower concentrations. Genetic variability in the metabolism and clearance of arsenic is an important consideration in any investigation of its potential health risks. Therefore, we examined the association between genes thought to play a role in the metabolism of arsenic and bladder cancer. Methods Single nucleotide polymorphisms (SNPs) in GSTO-1, As3MT and MTHFR were genotyped using DNA from 219 bladder cancer cases and 273 controls participating in a case–control study in Southeastern Michigan and exposed to low to moderate (<50 μg/L) levels of arsenic in their drinking water. A time-weighted measure of arsenic exposure was constructed using measures from household water samples combined with past residential history, geocoded and merged with archived arsenic data predicted from multiple resources. Results While no single SNP in As3MT was significantly associated with bladder cancer overall, several SNPs were associated with bladder cancer among those exposed to higher arsenic levels. Individuals with one or more copies of the C allele in rs11191439 (the Met287Thr polymorphism) had an elevated risk of bladder cancer (OR = 1.17; 95% CI = 1.04-1.32 per 1 μg/L increase in average exposure). However, no association was observed between average arsenic exposure and bladder cancer among TT homozygotes in the same SNP. Bladder cancer cases were also 60% less likely to be homozygotes for the A allele in rs1476413 in MTHFR compared to controls (OR = 0.40; 95% CI = 0.18-0.88). Conclusions Variation in As3MT and MTHFR is associated with bladder cancer among those exposed to relatively low concentrations of inorganic arsenic. Further investigation is warranted to confirm these findings.http://deepblue.lib.umich.edu/bitstream/2027.42/112833/1/12940_2012_Article_570.pd
    corecore