15 research outputs found

    Exoplanet diversity in the era of space-based direct imaging missions

    Get PDF
    Community White Paper: submitted to the National Academy of Sciences Exoplanet Science StrategyThis white paper discusses the diversity of exoplanets that could be detected by future observations, so that comparative exoplanetology can be performed in the upcoming era of large space-based flagship missions. The primary focus will be on characterizing Earth-like worlds around Sun-like stars. However, we will also be able to characterize companion planets in the system simultaneously. This will not only provide a contextual picture with regards to our Solar system, but also presents a unique opportunity to observe size dependent planetary atmospheres at different orbital distances. We propose a preliminary scheme based on chemical behavior of gases and condensates in a planet's atmosphere that classifies them with respect to planetary radius and incident stellar flux

    The plasma environment of comet 67P/Churyumov-Gerasimenko

    Get PDF
    The environment of a comet is a fascinating and unique laboratory to study plasma processes and the formation of structures such as shocks and discontinuities from electron scales to ion scales and above. The European Space Agency’s Rosetta mission collected data for more than two years, from the rendezvous with comet 67P/Churyumov-Gerasimenko in August 2014 until the final touch-down of the spacecraft end of September 2016. This escort phase spanned a large arc of the comet’s orbit around the Sun, including its perihelion and corresponding to heliocentric distances between 3.8 AU and 1.24 AU. The length of the active mission together with this span in heliocentric and cometocentric distances make the Rosetta data set unique and much richer than sets obtained with previous cometary probes. Here, we review the results from the Rosetta mission that pertain to the plasma environment. We detail all known sources and losses of the plasma and typical processes within it. The findings from in-situ plasma measurements are complemented by remote observations of emissions from the plasma. Overviews of the methods and instruments used in the study are given as well as a short review of the Rosetta mission. The long duration of the Rosetta mission provides the opportunity to better understand how the importance of these processes changes depending on parameters like the outgassing rate and the solar wind conditions. We discuss how the shape and existence of large scale structures depend on these parameters and how the plasma within different regions of the plasma environment can be characterised. We end with a non-exhaustive list of still open questions, as well as suggestions on how to answer them in the future

    Comprehensive molecular characterization of the hippo signaling pathway in cancer

    Get PDF
    Hippo signaling has been recognized as a key tumor suppressor pathway. Here, we perform a comprehensive molecular characterization of 19 Hippo core genes in 9,125 tumor samples across 33 cancer types using multidimensional “omic” data from The Cancer Genome Atlas. We identify somatic drivers among Hippo genes and the related microRNA (miRNA) regulators, and using functional genomic approaches, we experimentally characterize YAP and TAZ mutation effects and miR-590 and miR-200a regulation for TAZ. Hippo pathway activity is best characterized by a YAP/TAZ transcriptional target signature of 22 genes, which shows robust prognostic power across cancer types. Our elastic-net integrated modeling further reveals cancer-type-specific pathway regulators and associated cancer drivers. Our results highlight the importance of Hippo signaling in squamous cell cancers, characterized by frequent amplification of YAP/TAZ, high expression heterogeneity, and significant prognostic patterns. This study represents a systems-biology approach to characterizing key cancer signaling pathways in the post-genomic era

    Influence of collisions on ion dynamics in the inner comae of four comets

    No full text
    Context. Collisions between cometary neutrals in the inner coma of a comet and cometary ions that have been picked up into the solar wind flow and return to the coma lead to the formation of a broad inner boundary known as a collisionopause. This boundary is produced by a combination of charge transfer and chemical reactions, both of which are important at the location of the collisionopause boundary. Four spacecraft measured ion densities and velocities in the inner region of comets, exploring the part of the coma where an ion-neutral collisionopause boundary is expected to form. Aims. The aims are to determine the dominant physics behind the formation of the ion-neutral collisionopause and to evaluate where this boundary has been observed by spacecraft. Methods. We evaluated observations from three spacecraft at four different comets to determine if a collisionopause boundary was observed based on the reported ion velocities. We compared the measured location of the ion-neutral collisionopause with measurements of the collision cross sections to evaluate whether chemistry or charge exchange are more important at the location where the collisionopause is observed. Results. Based on measurements of the cross sections for charge transfer and for chemical reactions, the boundary observed by Rosetta appears to be the location where chemistry becomes the more probable result of a collision between H2O and H2O+ than charge exchange. Comparisons with ion observations made by Deep Space 1 at 19P/Borrelly and Giotto at 1P/Halley and 26P/Grigg-Skjellerup show that similar boundaries were observed at 19P/Borrelly and 1P/Halley. The ion composition measurements made by Giotto at Halley confirm that chemistry becomes more important inside of this boundary and that electron-ion dissociative recombination is a driver for the reported ion pileup boundary

    New insights on Saturn’s formation from its nitrogen isotopic composition

    Full text link
    The recent derivation of a lower limit for the 14N/15N ratio in Saturn's ammonia, which is found to be consistent with the Jovian value, prompted us to revise models of Saturn's formation using as constraints the supersolar abundances of heavy elements measured in its atmosphere. Here we find that it is possible to account for both Saturn's chemical and isotopic compositions if one assumes the formation of its building blocks at ∼45 K in the protosolar nebula, provided that the O abundance was ∼2.6 times protosolar in its feeding zone. To do so, we used a statistical thermodynamic model to investigate the composition of the clathrate phase that formed during the cooling of the protosolar nebula and from which the building blocks of Saturn were agglomerated. We find that Saturn's O/H is at least ∼34.9 times protosolar and that the corresponding mass of heavy elements (∼43.1 M⊕) is within the range predicted by semi-convective interior models.</div
    corecore