266 research outputs found

    Metatranscriptomics reveals diversity of symbiotic interaction and mechanisms of carbon exchange in the marine cyanolichen Lichina pygmaea

    Get PDF
    Lichens are exemplar symbioses based upon carbon exchange between photobionts and their mycobiont hosts. Historically considered a two-way relationship, some lichen symbioses have been shown to contain multiple photobiont partners; however, the way in which these photobiont communities react to environmental change is poorly understood. Lichina pygmaea is a marine cyanolichen that inhabits rocky seashores where it is submerged in seawater during every tidal cycle. Recent work has indicated that L. pygmaea has a complex photobiont community including the cyanobionts Rivularia and Pleurocapsa. We performed rRNA-based metabarcoding and mRNA metatranscriptomics of the L. pygmaea holobiont at high and low tide to investigate community response to immersion in seawater. Carbon exchange in L. pygmaea is a dynamic process, influenced by both tidal cycle and the biology of the individual symbiotic components. The mycobiont and two cyanobiont partners exhibit distinct transcriptional responses to seawater hydration. Sugar-based compatible solutes produced by Rivularia and Pleurocapsa in response to seawater are a potential source of carbon to the mycobiont. We propose that extracellular processing of photobiont-derived polysaccharides is a fundamental step in carbon acquisition by L. pygmaea and is analogous to uptake of plant-derived carbon in ectomycorrhizal symbioses

    Seagrass can mitigate negative ocean acidification effects on calcifying algae

    Get PDF
    The ultimate effect that ocean acidification (OA) and warming will have on the physiology of calcifying algae is still largely uncertain. Responses depend on the complex interactions between seawater chemistry, global/local stressors and species-specific physiologies. There is a significant gap regarding the effect that metabolic interactions between coexisting species may have on local seawater chemistry and the concurrent effect of OA. Here, we manipulated CO2 and temperature to evaluate the physiological responses of two common photoautotrophs from shallow tropical marine coastal ecosystems in Brazil: the calcifying alga Halimeda cuneata, and the seagrass Halodule wrightii. We tested whether or not seagrass presence can influence the calcification rate of a widespread and abundant species of Halimeda under OA and warming. Our results demonstrate that under elevated CO2, the high photosynthetic rates of H. wrightii contribute to raise H. cuneata calcification more than two-fold and thus we suggest that H. cuneata populations coexisting with H. wrightii may have a higher resilience to OA conditions. This conclusion supports the more general hypothesis that, in coastal and shallow reef environments, the metabolic interactions between calcifying and non-calcifying organisms are instrumental in providing refuge against OA effects and increasing the resilience of the more OA-susceptible species.E.B. would like to thank the Coordenação de Aperfeiçoamento de Pessoas de Nível Superior (CAPES) for Masters funding. Funding for this project came from the Synergism grant (CNPq 407365/2013-3). We extend our thanks to the Brazil-based Projeto Coral Vivo and its sponsor PetroBras Ambiental for providing the Marine Mesocosm structure and experimental assistance.info:eu-repo/semantics/publishedVersio

    Ocean acidification through the lens of ecological theory

    Get PDF
    Ocean acidification, chemical changes to the carbonate system of seawater, is emerging as a key environmental challenge accompanying global warming and other human-induced perturbations. Considerable research seeks to define the scope and character of potential outcomes from this phenomenon, but a crucial impediment persists. Ecological theory, despite its power and utility, has been only peripherally applied to the problem. Here we sketch in broad strokes several areas where fundamental principles of ecology have the capacity to generate insight into ocean acidification's consequences. We focus on conceptual models that, when considered in the context of acidification, yield explicit predictions regarding a spectrum of population- and community-level effects, from narrowing of species ranges and shifts in patterns of demographic connectivity, to modified consumer–resource relationships, to ascendance of weedy taxa and loss of species diversity. Although our coverage represents only a small fraction of the breadth of possible insights achievable from the application of theory, our hope is that this initial foray will spur expanded efforts to blend experiments with theoretical approaches. The result promises to be a deeper and more nuanced understanding of ocean acidification and the ecological changes it portends

    Prolonged mitotic arrest induces a caspase-dependent DNA damage response at telomeres that determines cell survival

    Get PDF
    A delay in the completion of metaphase induces a stress response that inhibits further cell proliferation or induces apoptosis. This response is thought to protect against genomic instability and is important for the effects of anti-mitotic cancer drugs. Here, we show that mitotic arrest induces a caspase-dependent DNA damage response (DDR) at telomeres in non-apoptotic cells. This pathway is under the control of Mcl-1 and other Bcl-2 family proteins and requires caspase-9, caspase-3/7 and the endonuclease CAD/DFF40. The gradual caspase-dependent loss of the shelterin complex protein TRF2 from telomeres promotes a DDR that involves DNA-dependent protein kinase (DNA-PK). Suppression of mitotic telomere damage by enhanced expression of TRF2, or the inhibition of either caspase-3/7 or DNA-PK during mitotic arrest, promotes subsequent cell survival. Thus, we demonstrate that mitotic stress is characterised by the sub-apoptotic activation of a classical caspase pathway, which promotes telomere deprotection, activates DNA damage signalling, and determines cell fate in response to a prolonged delay in mitosis

    Differential genetic associations for systemic lupus erythematosus based on anti-dsDNA autoantibody production

    Get PDF
    Systemic lupus erythematosus (SLE) is a clinically heterogeneous, systemic autoimmune disease characterized by autoantibody formation. Previously published genome-wide association studies (GWAS) have investigated SLE as a single phenotype. Therefore, we conducted a GWAS to identify genetic factors associated with anti-dsDNA autoantibody production, a SLE-related autoantibody with diagnostic and clinical importance. Using two independent datasets, over 400,000 single nucleotide polymorphisms (SNPs) were studied in a total of 1,717 SLE cases and 4,813 healthy controls. Anti-dsDNA autoantibody positive (anti-dsDNA +, n = 811) and anti-dsDNA autoantibody negative (anti-dsDNA -, n = 906) SLE cases were compared to healthy controls and to each other to identify SNPs associated specifically with these SLE subtypes. SNPs in the previously identified SLE susceptibility loci STAT4, IRF5, ITGAM, and the major histocompatibility complex were strongly associated with anti-dsDNA + SLE. Far fewer and weaker associations were observed for anti-dsDNA - SLE. For example, rs7574865 in STAT4 had an OR for anti-dsDNA + SLE of 1.77 (95% CI 1.57-1.99, p = 2.0E-20) compared to an OR for anti-dsDNA - SLE of 1.26 (95% CI 1.12-1.41, p = 2.4E-04), with pheterogeneity<0.0005. SNPs in the SLE susceptibility loci BANK1, KIAA1542, and UBE2L3 showed evidence of association with anti-dsDNA + SLE and were not associated with anti-dsDNA - SLE. In conclusion, we identified differential genetic associations with SLE based on anti-dsDNA autoantibody production. Many previously identified SLE susceptibility loci may confer disease risk through their role in autoantibody production and be more accurately described as autoantibody propensity loci. Lack of strong SNP associations may suggest that other types of genetic variation or non-genetic factors such as environmental exposures have a greater impact on susceptibility to anti-dsDNA - SLE

    Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel Mytilus edulis

    Get PDF
    Extreme events such as heat waves have increased in frequency and duration over the last decades. Under future climate scenarios, these discrete climatic events are expected to become even more recurrent and severe. Heat waves are particularly important on rocky intertidal shores, one of the most thermally variable and stressful habitats on the planet. Intertidal mussels, such as the blue mussel Mytilus edulis, are ecosystem engineers of global ecological and economic importance, that occasionally suffer mass mortalities. This study investigates the potential causes and consequences of a mass mortality event of M. edulis that occurred along the French coast of the eastern English Channel in summer 2018. We used an integrative, climatological and ecophysiological methodology based on three complementary approaches. We first showed that the observed mass mortality (representing 49 to 59% of the annual commercial value of local recreational and professional fisheries combined) occurred under relatively moderate heat wave conditions. This result indicates that M. edulis body temperature is controlled by non-climatic heat sources instead of climatic heat sources, as previously reported for intertidal gastropods. Using biomimetic loggers (i.e. 'robomussels'), we identified four periods of 5 to 6 consecutive days when M. edulis body temperatures consistently reached more than 30 °C, and occasionally more than 35 °C and even more than 40 °C. We subsequently reproduced these body temperature patterns in the laboratory to infer M. edulis thermal tolerance under conditions of repeated heat stress. We found that thermal tolerance consistently decreased with the number of successive daily exposures. These results are discussed in the context of an era of global change where heat events are expected to increase in intensity and frequency, especially in the eastern English Channel where the low frequency of commercially exploitable mussels already questions both their ecological and commercial sustainability.Funding Agency French Ministere de l'Enseignement Superieur et de la Recherche Region Hauts-de-France European Funds for Regional Economical Development Pierre Hubert Curien PESSOA Felloswhip Fundacao para a Ciencia e Tecnologia (FCT-MEC, Portugal) IF/01413/2014/CP1217/CT0004 National Research Foundation - South Africa 64801 South African Research Chairs Initiative (SARChI) of the Department of Science and Technology National Research Foundation - South Africainfo:eu-repo/semantics/publishedVersio

    Maternal Perception of Child Weight Among Mexicans in California and Mexico

    Get PDF
    The prevalence of childhood overweight is high in Mexican immigrant communities in the United States. Understanding mother’s perceptions of child weight in immigrants’ country of origin may help to understand this high prevalence. The goal of this study was to examine and compare mothers’ perception of weight in Mexico (MX) and in an immigrant community in California (CA). We assessed perceptions of child weight using a pictorial scale with 314 mothers of 5-year-old children in MX and 60 mothers of 5 year-old-children in CA. We compared maternal reports with children’s objectively measured weight. Using chi-square and Analysis of Variance, we investigated associations of maternal perception of and satisfaction with weight according to socio-demographic characteristics. Mothers were more likely to underestimate their children’s weight in CA than in MX. On average, CA mothers wanted their children to be smaller than they currently were and mothers in MX wanted their children to be bigger than they currently were. This differed by weight status in CA with mothers of normal weight and at-risk-for-overweight children wanting them to be bigger and mothers of overweight children wanting them to be smaller. In order for programs to be effective, mothers must be able to recognize their children as overweight and want to address it. Because underestimation of weight and a desire for a larger size is common in this population, programs to address overweight may be more effective if they focus on alternative benefits of weight control strategies, such as healthy child development

    Event-based processing of neutron scattering data at the Spallation Neutron Source

    Get PDF
    The Spallation Neutron Source at Oak Ridge National Laboratory, USA, ushered in a new era of neutron scattering experiments through the use of event-based data. Tagging each neutron event allows pump–probe experiments, measurements with a parameter asynchronous to the source, measurements with continuously varying parameters and novel ways of testing instrument components. This contribution will focus on a few examples. A pulsed magnet has been used to study diffraction under extreme fields. Continuous ramping of temperature is becoming standard on the POWGEN diffractometer. Battery degradation and phase transformations under heat and stress are often studied on the VULCAN diffractometer. Supercooled Al2O3 was studied on NOMAD. A study of a metallic glass through its glass transition was performed on the ARCS spectrometer, and the effect of source variation on chopper stability was studied for the SEQUOIA spectrometer. Besides a summary of these examples, an overview is provided of the hardware and software advances to enable these and many other event-based measurements

    Event-based processing of neutron scattering data at the Spallation Neutron Source

    Get PDF
    The Spallation Neutron Source at Oak Ridge National Laboratory, USA, ushered in a new era of neutron scattering experiments through the use of event-based data. Tagging each neutron event allows pump–probe experiments, measurements with a parameter asynchronous to the source, measurements with continuously varying parameters and novel ways of testing instrument components. This contribution will focus on a few examples. A pulsed magnet has been used to study diffraction under extreme fields. Continuous ramping of temperature is becoming standard on the POWGEN diffractometer. Battery degradation and phase transformations under heat and stress are often studied on the VULCAN diffractometer. Supercooled Al2O3 was studied on NOMAD. A study of a metallic glass through its glass transition was performed on the ARCS spectrometer, and the effect of source variation on chopper stability was studied for the SEQUOIA spectrometer. Besides a summary of these examples, an overview is provided of the hardware and software advances to enable these and many other event-based measurements

    Ocean acidification can mediate biodiversity shifts by changing biogenic habitat

    Get PDF
    The effects of ocean acidification (OA) on the structure and complexity of coastal marine biogenic habitat have been broadly overlooked. Here we explore how declining pH and carbonate saturation may affect the structural complexity of four major biogenic habitats. Our analyses predict that indirect effects driven by OA on habitat-forming organisms could lead to lower species diversity in coral reefs, mussel beds and some macroalgal habitats, but increases in seagrass and other macroalgal habitats. Available in situ data support the prediction of decreased biodiversity in coral reefs, but not the prediction of seagrass bed gains. Thus, OA-driven habitat loss may exacerbate the direct negative effects of OA on coastal biodiversity; however, we lack evidence of the predicted biodiversity increase in systems where habitat-forming species could benefit from acidification. Overall, a combination of direct effects and community-mediated indirect effects will drive changes in the extent and structural complexity of biogenic habitat, which will have important ecosystem effects
    corecore