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Abstract

Systemic lupus erythematosus (SLE) is a clinically heterogeneous, systemic autoimmune disease characterized by
autoantibody formation. Previously published genome-wide association studies (GWAS) have investigated SLE as a single
phenotype. Therefore, we conducted a GWAS to identify genetic factors associated with anti–dsDNA autoantibody
production, a SLE–related autoantibody with diagnostic and clinical importance. Using two independent datasets, over
400,000 single nucleotide polymorphisms (SNPs) were studied in a total of 1,717 SLE cases and 4,813 healthy controls. Anti–
dsDNA autoantibody positive (anti–dsDNA +, n = 811) and anti–dsDNA autoantibody negative (anti–dsDNA –, n = 906) SLE
cases were compared to healthy controls and to each other to identify SNPs associated specifically with these SLE subtypes.
SNPs in the previously identified SLE susceptibility loci STAT4, IRF5, ITGAM, and the major histocompatibility complex were
strongly associated with anti–dsDNA + SLE. Far fewer and weaker associations were observed for anti–dsDNA – SLE. For
example, rs7574865 in STAT4 had an OR for anti–dsDNA + SLE of 1.77 (95% CI 1.57–1.99, p = 2.0E-20) compared to an OR for
anti–dsDNA – SLE of 1.26 (95% CI 1.12–1.41, p = 2.4E-04), with pheterogeneity,0.0005. SNPs in the SLE susceptibility loci
BANK1, KIAA1542, and UBE2L3 showed evidence of association with anti–dsDNA + SLE and were not associated with anti–
dsDNA – SLE. In conclusion, we identified differential genetic associations with SLE based on anti–dsDNA autoantibody
production. Many previously identified SLE susceptibility loci may confer disease risk through their role in autoantibody
production and be more accurately described as autoantibody propensity loci. Lack of strong SNP associations may suggest
that other types of genetic variation or non-genetic factors such as environmental exposures have a greater impact on
susceptibility to anti–dsDNA – SLE.
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Introduction

Systemic lupus erythematosus (SLE) is the prototypic systemic

autoimmune disease and can affect virtually any organ system.

Manifestations of SLE are quite varied and include renal failure,

hemolytic anemia, arterial and venous clots, and disfiguring skin

rashes. Overall prevalence of SLE in the general population is 1 in

2000 individuals with a predilection for women (female to male

ratio of 6-10:1) [1]. Although the prevalence is relatively low, SLE

creates tremendous health care and societal costs since affected

individuals are typically young and can suffer significant morbidity

and early mortality.

The pivotal immunologic disturbance in SLE is the formation of

autoantibodies directed at cell membrane and nuclear compo-

nents. Deposition of immune complexes containing these autoan-

tibodies leads to inflammatory responses and end-organ damage.

Autoantibodies directed against native double-stranded DNA

(dsDNA) are observed in 40–60% of SLE patients. Anti–dsDNA

autoantibodies can be present prior to clinical symptoms of SLE

[2], and are implicated in the pathogenesis of lupus nephritis, a

major cause of morbidity and mortality in SLE [3,4]. Anti–dsDNA

autoantibodies have also been associated with decreased survival

[4]. Given its high specificity for SLE, anti–dsDNA autoantibody

production is one of the 11 classification criteria for SLE

developed by the American College of Rheumatology (ACR)

[5,6].

SLE susceptibility is strongly influenced by both genetic and

environmental factors. Recent genetic association studies have

successfully identified over 20 SLE susceptibility loci [7]. Odds

ratios (OR) for these associations have been modest, with most OR

,1.3. One potential factor influencing the magnitude of these

associations may be the extensive clinical heterogeneity of SLE.

Studying more specifically defined SLE manifestations may reveal

stronger and novel genetic associations. Therefore, we conducted

a genome-wide association study of anti–dsDNA autoantibody

production in SLE to identify genetic associations with this

clinically relevant autoantibody, and to determine if the genetic

associations were different between those SLE subjects that do and

do not produce this autoantibody.

Results

For this genome-wide association study (GWAS), we utilized

genotyping data from the GWAS of SLE published by Hom et al.

[8] as the discovery dataset, and genotyping data from the GWAS

of SLE published by The International Consortium on the

Genetics of Systemic Lupus Erythematosus (SLEGEN) [9] as the

replication dataset. Since both datasets utilized publicly available

healthy controls from the same sources, we supplemented the

controls in the replication dataset with 1142 healthy controls from

the Cancer Genetic Markers of Susceptibility (CGEMS) study

(http://cgems.cancer.gov/data/) [10]. After employing data

quality measures, including removal of duplicate and related

subjects (see Methods and Figure 1), a total of 1717 SLE cases and

4813 healthy controls of European descent were studied. The

discovery dataset was comprised of 1278 SLE cases and 3334

healthy controls, while the replication dataset was comprised of

439 SLE cases and 1479 healthy controls. For both datasets, 47%

of the SLE cases were anti–dsDNA +. In the joint dataset, 296,509

SNPs were typed in common between the discovery and

replication datasets and passed data quality measures (see

Methods). An additional 124,809 imputed SNPs (see Methods)

passed data quality filters and were included for analysis in the

replication and joint datasets. Figure 1 summarizes the autoan-

tibody status and sample sizes of the datasets used in this study, as

well as the number of individuals removed for each data quality

measure. The clinical characteristics of the subjects in this study,

provided in Table 1, are comparable to those in previously

reported studies [1,11].

Anti–dsDNA + SLE versus healthy controls
We first compared anti–dsDNA + SLE cases to healthy controls

using additive logistic regression models implemented in PLINK

[12] (http://pngu.mgh.harvard.edu/purcell/plink/). The discov-

ery and replication datasets were analyzed separately, and then

combined into a ‘‘joint analysis’’ for maximal statistical power. All

logistic regression models were adjusted for population stratifica-

tion using principal components analysis. Table S1 presents the

genomic control inflation factor (lGC) for each analysis prior to

and after adjustment for population stratification. P-values for

association were adjusted for the lGC observed after accounting

for population stratification (see Methods for additional details).

The quantile-quantile and Manhattan plots for the joint analysis

are displayed in Figure S1.

Table 2 (and Table S2) displays each locus with significant

(p,5E-07) or suggestive (p,1E-05) evidence of association in the

joint analysis. Excluding the associations seen with the major

histocompatilibity complex (MHC) on chromosome 6p21, 14

statistically significant associations were observed in the joint

analysis of genotyped SNPs when none would have been expected

under the null hypothesis. The most significant associations were

observed in the MHC, with rs1150754 near TNXB (ORjoint 2.21,

95% CI 1.92–2.53, p = 6.4E-29) as the most significantly

associated SNP. Outside of the MHC, the most significantly

associated SNP was rs7574865 (ORjoint 1.77, 95% CI 1.57–1.99,

p = 2.0E-20) located in STAT4. Strong evidence of association was

observed with SNPs in/near IRF5 and ITGAM. Association results

for these loci met the genome-wide significance threshold in both

datasets, and thus are considered replicated findings. These 3 loci

were previously shown to be associated with SLE [8,13,14], but

only STAT4 has been previously associated with anti–dsDNA

autoantibody production [15,16]. Strong evidence of association

was also observed for BLK in the joint analysis, but this association

did not meet the threshold for genome-wide significance in both

Author Summary

Systemic lupus erythematosus (SLE) is a chronic autoim-
mune disease that can involve virtually any organ system.
SLE patients produce antibodies that bind to their own
cells and proteins (autoantibodies) which can cause
irreversible organ damage. One particular SLE–related
autoantibody directed at double-stranded DNA (anti–
dsDNA) is associated with kidney involvement and more
severe disease. Previous genome-wide association studies
(GWAS) in SLE have studied SLE itself, not particular SLE
manifestations. Therefore, we conducted this GWAS of
anti–dsDNA autoantibody production to identify genetic
associations with this clinically important autoantibody.
We found that many previously identified SLE–associated
genes are more strongly associated with anti–dsDNA
autoantibody production than SLE itself, and they may
be more accurately described as autoantibody propensity
genes. No strong genetic associations were observed for
SLE patients who do not produce anti–dsDNA autoanti-
bodies, suggesting that other factors may have more
influence in developing this type of SLE. Further investi-
gation of these autoantibody propensity genes may lead
to greater insight into the causes of autoantibody
production and organ damage in SLE.
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datasets. While SNPs in/near LAMC2 and COL25A1 met the

genome-wide significance threshold in the discovery dataset, these

associations were not observed in the replication dataset, possibly

due to the limited statistical power of the second dataset.

Suggestive findings of association in the joint dataset (p,1E-05)

were seen with SNPs near or in the PTTG1, UBE2L3, SLC1A7,

and KIAA1542 loci, and with rs10737562 (no known gene within

100 kb). PTTG1, KIAA1542, and UBE2L3 have been shown to be

Figure 1. Overview of sample sizes and genotyping platforms used in this study.
doi:10.1371/journal.pgen.1001323.g001
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associated with SLE [7,9], and thus, are likely true associations

that are specific for anti–dsDNA + SLE. The associations with

SLC1A7 and rs10737562 have not been previously reported with

SLE or anti–dsDNA autoantibody production, and should be

replicated in another collection of anti–dsDNA + SLE cases.

Anti–dsDNA + SLE cases (n = 811) were also compared to the

combined group of anti–dsDNA – SLE cases and healthy controls

(n = 5719) to conduct an analysis maximally powered to identify

SNPs only associated with anti–dsDNA + SLE. No new loci (i.e.,

loci not presented in Table 2) displayed significant or suggestive

evidence of association. Also, analyses comparing anti–dsDNA +
SLE cases to healthy controls excluding ANA negative subjects

showed results similar to Table 2 (data not shown).

Anti–dsDNA negative SLE versus healthy controls
Next, we compared anti–dsDNA – SLE cases to healthy

controls in the discovery, replication, and combined ‘‘joint

analysis’’ datasets using additive logistic regression models adjusted

for population stratification as described previously. Table S1

presents the genomic control inflation factor (lGC) for each

analysis prior to and after adjustment for population stratification.

The quantile-quantile and Manhattan plots for the joint analysis

are displayed in Figure S2.

Far fewer statistically significant genetic associations were

observed. Excluding the MHC, one statistically significant

association was observed in the joint analysis of genotyped SNPs

when none would have been expected under the null hypothesis

(p,5E-07). The most significant associations were again seen in

the MHC, with rs2301271 (,9 kb downstream from HLA-DQA2)

as the most significantly associated MHC SNP (ORjoint 1.47, 95%

CI 1.32–1.63, p = 2.0E-12). In the discovery dataset, no SNPs

outside of the MHC met our genome-wide significance threshold.

In the joint analysis (Table 3), an additional association with

rs10488631 near IRF5 met genome-wide significance (ORjoint

1.57, 95% CI 1.35–1.82, p = 6.2E-09). Three SNPs had suggestive

evidence of association in the joint analysis: rs2669010 in

RPL7AP50, rs918959 (no known gene within 100 KB), and the

missense SNP rs7927370 in OR4A15. These novel findings need to

be replicated in another collection of anti–dsDNA – SLE cases.

Analyses excluding ANA negative subjects showed similar results

(data not shown).

Case-only analysis
Using the combined dataset, we compared the anti–dsDNA +

SLE cases (n = 811) to the anti–dsDNA – SLE cases (n = 906) using

additive logistic regression models. Minimal population stratifica-

tion was observed between these two groups (lGC = 1.01) without

adjustment using principal components. However, we included the

principal components in these models to decrease the possible

influence of subtle stratification on our findings (lGC = 1.00 after

adjustment for population stratification).

No SNP met our genome-wide significance threshold (p,5E-

07) for anti–dsDNA autoantibody production in this analysis. Six

SNPs showed suggestive evidence of association (p,1E-05), as

shown in Table 4. Only three SNPs would be expected to have a

p,1E-05 under the null hypothesis. Similar to the anti–dsDNA +
analysis described above, rs7574865 in STAT4 was once again

found to be associated with anti–dsDNA + SLE. rs1463525 in

NAALADL2 is of interest, since this gene was recently identified as

a susceptibility locus for Kawasaki disease [17], another autoim-

Table 1. Characteristics of the study participants.

anti–dsDNA + anti–dsDNA – Healthy controls

Characteristic (n = 811) (n = 906) (n = 4813)

Male, n (%) 67 (8) 40 (4) 1300 (27)

SLE characteristics{

Median age at diagnosis, years (interquartile range) 30 (22–40) 37 (28–45)

Malar rash*, n (%) 430 (53) 447 (49)

Discoid rash*, n (%) 73 (9) 101 (11)

Photosensitivity*, n (%) 498 (61) 670 (74)

Oral ulcers*, n (%) 290 (36) 428 (47)

Arthritis*, n (%) 662 (82) 719 (79)

Serositis (pericarditis or pleuritis)*, n (%) 327 (40) 346 (38)

Neurologic (seizure or psychosis)*, n (%) 92 (11) 87 (10)

Hematologic (leukopenia, lymphopenia,
hemolytic anemia, or thrombocytopenia)*, n (%)

547 (68) 489 (54)

Immunologic (anti–dsDNA, anti-Sm,
or antiphospholipid antibodies)*, n (%)

811 (100) 382 (42)

Renal disorder (proteinuria or cellular casts)*, n (%) 321 (40) 154 (17)

Anti-nuclear antibody*, n (%) 792 (98) 837 (92)

Anti-SSA/Ro autoantibody, n (%)# 267 (34) 198 (23)

Anti-SSB/La autoantibody, n (%)# 122 (16) 91 (10)

Anti-Sm autoantibody, n (%)# 138 (18) 53 (6)

Anti-RNP autoantibody, n (%)# 192 (25) 112 (13)

{ SLE denotes systemic lupus erythematosus.
* A person needs to have 4 out of these 11 critieria to be classified as having SLE [5,6].
# Percentages may not be based on the total number in each anti–dsDNA subgroup due to missing data.
doi:10.1371/journal.pgen.1001323.t001
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mune disease. However, the most significantly associated SNP for

Kawasaki disease (rs17531088) is not in linkage disequilibrium

with the SNP identified in our analysis (r2 = 0.002 in the CEU

HapMap population). The statistical power for this analysis was

limited by our relatively smaller sample size. Thus, additional

studies are needed to fully explore this area and to replicate our

findings.

Since two of the suggested SNPs are located within the MHC,

our findings indicate that MHC associations may be heteroge-

neous between these two subgroups of SLE. This finding is further

supported by a plot of the p-values for association among the

MHC SNPs, as shown in Figure 2. The strongest MHC

associations with anti–dsDNA autoantibody production among

these SLE patients were within the class II region. Given the

extensive linkage disequilibrium of the MHC, many of these

associations may be driven by the MHC class II locus HLA-DRB1,

a well established SLE susceptibility gene [18,19].

Comparison of SLE–associated SNPs
Next, we examined the magnitude of association between 22

polymorphisms previously associated with SLE in Gateva et al.

[7], stratified by anti–dsDNA autoantibody status using tests of

heterogeneity. For each SNP, the association result in the anti–

dsDNA + versus healthy control analysis was compared to the

association result for the anti–dsDNA – versus healthy control

analysis. A p-value of less than 0.05 was considered significant

evidence of heterogeneity.

Table 5 presents the results of the tests of heterogeneity, along

with the association results from the case-only analysis, for these

22 SLE susceptibility loci. Associations for HLA-DR3 (indicated

by its tagSNP rs2187668) and SNPs in STAT4 and ITGAM

differed substantially between the two anti–dsDNA subgroups

(pheterogeneity,0.005). In addition, SNPs in the BANK1, KIAA1542,

ITGAM, and UBE2L3 regions also showed differential associations

in the two anti–dsDNA subgroups (p,0.05). For all of these SNPs,

the associations with anti–dsDNA + SLE had stronger OR and

smaller p-values when compared to anti–dsDNA – SLE or SLE

itself. The differences are best demonstrated by rs7574865 in

STAT4: OR for anti–dsDNA + SLE 1.77 (95% CI 1.57–1.99,

p = 2.0E-20) compared to OR for anti–dsDNA – SLE 1.26 (95%

1.12–1.41, p = 2.4E-4), with p-value for the test of heterogeneity

,0.0005. In contrast, ORs of association were quite similar

Table 2. Loci with significant (p,5E-07) or suggestive (p between 5E-07 and 1E-05) evidence for association with anti–dsDNA +
SLE identified in the joint analysis.

Discovery dataset Replication dataset Joint analysis

605 cases, 3334 controls 206 cases, 1479 controls 811 cases, 4813 controls

Gene/
Region chr SNP position MA{

OR
(95% CI)

p
(lGC = 1.045)

OR
(95% CI)

p
(lGC = 1.038)

MAF{
cases

MAF{
controls

OR
(95% CI)

p
(lGC = 1.048)

TNXBa 6 rs1150754 32158736 A 2.05
(1.74–2.40)

9.1E-18 2.77
(2.14–3.58)b

1.4E-13b 0.25 0.13 2.21
(1.93–2.53)c

6.4E-29c

HLA-DR3a 6 rs2187668 32713862 A 2.14
(1.81–2.52)

3.1E-18 2.54
(1.95–3.32)

1.8E-11 0.22 0.12 2.23
(1.94–2.57)

5.8E-28

STAT4 2 rs7574865 191790139 T 1.74
(1.51–1.99)

2.3E-14 1.87
(1.49–2.36)

1.7E-07 0.35 0.23 1.77
(1.57–1.99)

2.0E-20

IRF5 7 rs10488631 128188134 C 1.73
(1.45–2.05)

1.2E-09 2.52
(1.91–3.32)

1.5E-10 0.19 0.11 1.92
(1.66–2.22)

7.2E-18

ITGAM 16 rs9888739 31220754 T 1.57
(1.33–1.86)

2.8E-07 2.50
(1.93–3.24)

1.1E-11 0.21 0.13 1.80
(1.56–2.07)

1.1E-15

BLK 8 rs2736340 11381382 T 1.30
(1.13–1.50)

3.7E-04 1.59
(1.26–1.99)

9.5E-05 0.30 0.23 1.38
(1.23–1.56)

2.5E-07

LAMC2 1 rs525410 179908087 G 0.71
(0.62–0.8)

2.5E-07 0.89
(0.72–1.1)

0.30 0.45 0.51 0.75
(0.68–0.84)

6.5E-07

COL25A1 4 rs4956211 110080730 A 1.41
(1.24–1.6)

4.2E-07 1.14
(0.91–1.42)b

0.27b 0.42 0.35 1.33
(1.19–1.48)c

1.1E-06c

PTTG1 5 rs2431697 159812556 C 0.73
(0.64–0.84)

6.8E-06 0.82
(0.66–1.01)

0.069 0.37 0.44 0.76
(0.68–0.85)

1.7E-06

UBE2L3 22 rs5754217 20264229 T 1.37
(1.17–1.60)

9.7E-05 1.45
(1.14–1.84)

0.0031 0.24 0.19 1.38
(1.21–1.57)

1.9E-06

SLC1A7 1 rs6695567 53341606 A 0.80
(0.70–0.91)

0.0010 0.70
(0.56–0.87)

0.0015 0.37 0.43 0.76
(0.68–0.85)

3.6E-06

KIAA1542 11 rs4963128 579564 A 0.78
(0.68–0.90)

6.5E-04 0.66
(0.52–0.84)

7.5E-04 0.27 0.34 0.75
(0.67–0.85)

3.9E-06

d 1 rs10737562 186455280 A 1.02
(0.90–1.16)

0.77 0.36
(0.28–0.45)b

4.1E-15b 0.44 0.50 0.77
(0.69–0.86)c

6.8E-06c

Only the most significantly associated SNP per locus is displayed. Additional associated SNPs for each locus are presented in Table S2.
{ MA = Minor allele, MAF = minor allele frequency.
a Only the most significantly associated MHC SNP and the HLA-DR3 tagSNP is included.
b imputed SNP, lGC = 1.089.
c imputed SNP, lGC = 1.071.
d No known gene within 100 kb.
doi:10.1371/journal.pgen.1001323.t002
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between the 2 SLE subgroups for SNPs in/near the FCGR2A,

OX40L, IL10, PXK, UHRF1BP1, PRDM1, BLK, and IRAK1

regions.
When examining these SNPs in the case-only analysis,

rs2476601 (PTPN22), rs10488631 (IRF5), and rs2431099 (PTTG1)

were more strongly associated with anti–dsDNA + SLE than anti–

dsDNA – SLE (p,0.05). Sensitivity analysis of the 722 SLE cases

with longitudinal anti–dsDNA autoantibody data (of which 46%

were anti–dsDNA +, see Methods) showed good consistency in

OR with the analyses performed using the full dataset (data not

shown).
Among the SNPs studied in this comparison, we did not identify

a single SNP that was more strongly associated with anti–dsDNA –

SLE disease than anti–dsDNA + SLE or SLE itself, based on OR

or p-values.

Genetic Risk Score analysis
To study the relationship between cumulative genetic risk and

anti–dsDNA autoantibody production, we calculated an SLE

genetic risk score (GRS) by counting the total number of risk

alleles an individual had for the 22 SLE-associated SNPs listed in

Table 5. The mean SLE GRS was higher in anti–dsDNA + SLE

cases (15.5, SD 3.1) compared to anti–dsDNA – SLE cases (14.5,

SD 3.0) and healthy controls (13.1, SD 2.8), and the trend was

highly statistically significant (ptrend = 1.0E-102). In logistic regres-

sion analyses adjusting for study source and population stratifica-

tion, the odds of producing anti–dsDNA among SLE cases

increased by 12% (OR 1.12, 95% CI 1.09–1.16) for each 1 unit

increase in the SLE GRS. When comparing to healthy controls,

the odds of having anti–dsDNA + SLE increased by 32% (OR

Table 3. SNPs with significant (p,5E-07) or suggestive (p between 5E-07 and 1E-05) evidence for association with anti–dsDNA –
SLE identified in the joint analysis.

Discovery dataset Replication dataset Joint analysis

(673 cases, 3334
controls)

(233 cases, 1479
controls)

(906 cases,
4813 controls)

Gene/
Region chr SNP position MA{

OR
(95% CI)

p
(lGC = 1.029)

OR
(95% CI)

p
(lGC = 1.049)

MAF
{cases

MAF
{ controls

OR
(95% CI)

p
(lGC = 1.045)

HLA-DQA2a 6 rs2301271 32833171 T 1.48
(1.3–1.67)

1.4E-09 1.5
(1.23–1.83)

1.2E-04 0.51 0.40 1.47
(1.32–1.63)

2.0E-12

IRF5 7 rs12531711 128211417 G 1.45
(1.21–1.73)

5.4E-05 1.95
(1.48–2.58)b

7.2E-06b 0.16 0.11 1.58
(1.36–1.83)c

6.0E-09c

IRF5 7 rs10488631 128188134 C 1.46
(1.22–1.74)

3.8E-05 1.88
(1.42–2.49)

1.5E-05 0.16 0.11 1.57
(1.35–1.82)

6.2E-09

IRF5 7 rs12537284 128311857 A 1.33
(1.13–1.57)

8.8E-04 1.65
(1.27–2.13)

2.1E-04 0.18 0.13 1.42
(1.23–1.62)

1.5E-06

d 2 rs918959 181339235 A 0.53
(0.41–0.69)

3.7E-06 0.68
(0.45–1.02)b

0.076b 0.05 0.09 0.58
(0.46–0.72)c

2.4E-06c

RPL7AP59 12 rs2669010 75511528 A 1.26
(1.11–1.42)

3.2E-04 1.33
(1.09–1.63)

0.0054 0.45 0.40 1.28
(1.16–1.42)

4.7E-06

OR4A15 11 rs7927370 54892795 T 0.51
(0.36–0.7)

7.1E-05 0.56
(0.33–0.95)

0.034 0.03 0.06 0.52
(0.39–0.69)

7.1E-06

{ MA = minor allele; MA = minor allele frequency.
a Only the most significantly associated MHC SNP is included.
b imputed analysis, lGC = 1.097.
c imputed analysis, lGC = 1.066.
d no known gene within 100 kb.
doi:10.1371/journal.pgen.1001323.t003

Table 4. Loci with suggestive (p between 5E-07 and 1E-05) evidence for association with anti–dsDNA + SLE identified in the case-
only analysis (811 anti–dsDNA + SLE cases compared to 906 anti–dsDNA – SLE cases).

MAF{ MAF{

Gene/Region chr SNP position MA{ anti–dsDNA + anti–dsDNA – OR (95% CI) p (lGC = 1.000)

NOTCH4/C6orf10 6 rs3130320 32331236 T 0.46 0.39 1.39 (1.21–1.60) 3.15E-06

a 3 rs12629106 178577774 T 0.13 0.19 0.64 (0.53–0.77) 3.71E-06

NAALADL2 3 rs1463525 176444089 C 0.35 0.43 0.73 (0.63–0.84) 7.69E-06

STAT4 2 rs7574865 191790139 T 0.35 0.28 1.41 (1.21–1.63) 7.95E-06

TMC2 20 rs6049839 2466565 T 0.47 0.40 1.37 (1.19–1.58) 8.16E-06

HLA-DQA1/HLA-DQA2 6 rs2647012 32772436 A 0.51 0.44 1.38 (1.20–1.59) 8.39E-06

{ MA = minor allele; MAF = minor allele frequency.
a no known gene within 100 kb.
doi:10.1371/journal.pgen.1001323.t004
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1.32, 95% CI 1.28–1.35) for each 1 unit increase in the SLE GRS

versus 18% (OR 1.18, 95% CI 1.15–1.21) for anti–dsDNA – SLE.

These findings indicate that SLE cases with higher genetic risk are

more likely to be anti–dsDNA positive. A more thorough

investigation of the association between SLE GRS and SLE

manifestations is presented in Taylor et al. [20].

Discussion

In this paper, we present the first GWAS of anti–dsDNA

autoantibody production in SLE. We have shown that SNPs in the

MHC, STAT4, IRF5, and ITGAM regions are associated with

anti–dsDNA + SLE. Only SNPs in the MHC and IRF5 met

genome-wide significance threshold levels in the analysis of anti–

dsDNA – SLE, with lower OR and larger p-values compared to

their associations with anti–dsDNA + SLE. Furthermore, many of

the previously identified SLE susceptibility loci showed differential

associations between the 2 anti–dsDNA subgroups. Using a

genetic risk score analysis, we found that SLE cases with a greater

number of risk alleles were more likely to be anti–dsDNA +. These

results suggest that genetic factors may have a greater influence in

the development of anti–dsDNA + SLE as compared to anti–

dsDNA – SLE.

The strongest association signals for both the anti–dsDNA +
and anti–dsDNA – analyses were observed with MHC SNPs.

Previous studies have shown that the strongest, most consistent

genetic signals with SLE have been with the HLA-DR2 and HLA-

DR3 MHC serotypes [18,19]. While we confirm these findings, we

also show that the HLA-DR3 association with SLE (as suggested

by its tagSNP, rs2187668) is far stronger in anti–dsDNA + SLE as

compared to anti–dsDNA – SLE or SLE itself. Thus, the HLA-

DR3 allele may have a greater impact on the propensity to

produce autoantibodies compared to SLE susceptibility generally.

Although a similar finding was observed with HLA-DR2 (tagSNP

rs9271366), the test of heterogeneity was not statistically

significant, possibly due in part to decreased statistical power

Figure 2. Association results for the MHC SNPs from the case-only analysis.
doi:10.1371/journal.pgen.1001323.g002
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since the DR2 tagSNP is less common than the DR3 tagSNP

(DR2 tagSNP minor allele frequency 0.182 in anti–dsDNA + SLE,

0.167 in anti–dsDNA – SLE, and 0.143 in healthy controls).

Examination of other MHC SNPs in the case-only analysis

indicates that other (non-HLA-DRB1) loci may have associations

with anti–dsDNA autoantibody production beyond the associa-

tions observed with SLE.

In addition to the HLA-DR3 tagSNP discussed above, the

associations between the STAT4 and ITGAM SNPs and anti–

dsDNA + SLE were stronger in magnitude than the associations

with SLE per se in our datasets (Table 5). The smaller p-values

seen in the associations for these loci with anti–dsDNA + SLE are

especially striking given the substantially smaller sample size of this

subgroup. Our results imply that STAT4, ITGAM, and HLA-DR3

may be more accurately considered ‘‘autoantibody propensity

loci’’ rather than simply ‘‘SLE susceptibility loci’’ given their

significant tests of heterogeneity (p,0.05). Using this criterion,

three other previously identified SLE susceptibility loci may also

be considered autoantibody propensity loci: KIAA1542, BANK1,

and UBE2L3. In fact, these SNPs had no evidence of association

with anti–dsDNA – SLE in this study (p.0.05). By characterizing

these SNPs as autoantibody propensity loci, we identify a potential

mechanistic role for these disease associations.

Are these autoantibody propensity loci associated with other

autoantibodies? In rheumatoid arthritis (RA), other alleles of the

HLA-DRB1 locus (collectively referred to as the ‘‘shared

epitope’’) are associated with anti-CCP autoantibody positivity

[21]. While a study of STAT4 (rs7574865) in an early RA

inception cohort suggested an association with the anti-CCP

autoantibody [22], others have not a shown strong association

between this SNP and seropositivity in RA [23]. PTPN22

(rs2476601) has been shown to be more strongly associated with

autoantibody positive RA [22]. In our study, other SLE-related

autoantibodies (anti-SSA, anti-SSB, anti-Sm, and anti-RNP) are

more frequent in the anti–dsDNA + subgroup (Table 1), but

correlations between anti–dsDNA and these other autoantibodies

antibodies are modest, with Pearson correlation coefficients ,0.2

(data not shown). Thus, additional studies are needed to further

investigate whether these or other loci are associated with other

autoantibodies.

Table 5. Comparison of association results for loci associated with systemic lupus erythematosus described in Gateva et. al [7],
stratified by anti–dsDNA autoantibody production.

SLE versus healthy
controls

anti–dsDNA + versus
healthy controls

anti–dsDNA – versus
healthy controls Case Only Analysis

(1717 cases, 4813
controls) (811 cases, 4813 controls) (906 cases, 4813 controls)

Test of
hetero-
geneity

(811 anti–dsDNA+ cases
versus 906 anti–dsDNA –
cases)

Gene SNP
OR
(95% CI)

p
(lGC =
1.080)

OR
(95% CI)

p
(lGC =
1.048)

OR
(95% CI)

p
(lGC =
1.045) p

OR
(95% CI)

p
(lGC =
1.000)

PTPN22 rs2476601 1.26 (1.1–1.43) 9.5E-04 1.41 (1.19–1.66) 8.7E-05 1.14 (0.96–1.35) 0.15 0.078 1.24 (1.00–1.53) 0.047

FCGR2A rs1801274 0.84 (0.77–0.91) 4.7E-05 0.83 (0.74–0.92) 0.0010 0.84 (0.76–0.94) 0.0022 0.80 0.99 (0.87–1.14) 0.92

OX40L rs2205960 1.24 (1.13–1.36) 1.7E-05 1.28 (1.13–1.44) 1.6E-04 1.22 (1.09–1.38) 0.0012 0.64 1.06 (0.91–1.23) 0.48

IL10 rs3024505 1.25 (1.13–1.39) 4.8E-05 1.29 (1.12–1.49) 4.1E-04 1.24 (1.08–1.41) 0.0022 0.66 1.04 (0.87–1.23) 0.69

STAT4 rs7574865 1.49 (1.36–1.63) 3.6E-16 1.77 (1.57–1.99) 2.0E-20 1.26 (1.12–1.41) 2.4E-04 ,0.0005 1.41 (1.21–1.63) 7.9E-06

PXK rs6445975 1.14 (1.05–1.25) 0.0045 1.15 (1.02–1.29) 0.027 1.14 (1.02–1.28) 0.027 0.95 1.01 (0.88–1.17) 0.87

BANK1 rs10516487 0.93 (0.85–1.01) 0.11 0.85 (0.76–0.96) 0.011 1.01 (0.9–1.13) 0.92 0.048 0.85 (0.73–0.99) 0.030

TNIP1 rs10036748 1.26 (1.15–1.38)a 2.5E-06a 1.30 (1.15–1.46)b 3.0E-05b 1.23 (1.09–1.38)c 7.9E-04c 0.51 1.08 (0.93–1.25)d 0.32d

PTTG1 rs2431099 0.84 (0.78–0.91)a 1.1E-04a 0.78 (0.70–0.87)b 1.4E-05b 0.91 (0.82–1.01)c 0.072c 0.052 0.87 (0.76–0.99)d 0.037d

HLA-DR2 rs9271366 1.27 (1.13–1.41) 7.4E-05 1.36 (1.17–1.57) 7.1E-05 1.18 (1.03–1.36) 0.024 0.19 1.16 (0.97–1.39) 0.11

HLA-DR3 rs2187668 1.91 (1.71–2.14) 1.0E-27 2.23 (1.94–2.57) 5.8E-28 1.62 (1.4–1.87) 1.2E-10 0.002 1.40 (1.18–1.67) 1.4E-04

UHRF1BP1 rs9462015 1.27 (1.16–1.38) 1.8E-07 1.27 (1.14–1.42) 5.3E-05 1.27 (1.14–1.42) 2.4E-05 1.00 1 (0.87–1.15) 0.96

PRDM1 rs6568431 1.19 (1.1–1.3) 4.2E-05 1.19 (1.06–1.32) 0.0026 1.2 (1.08–1.33) 8.5E-04 0.88 0.98 (0.86–1.12) 0.77

ATG5 rs633724 1.13 (1.04–1.22) 0.0069 1.18 (1.06–1.32) 0.0043 1.08 (0.97–1.2) 0.16 0.27 1.1 (0.96–1.26) 0.19

TNFAIP3 rs2327832 1.2 (1.08–1.32) 5.4E-04 1.27 (1.12–1.44) 2.8E-04 1.13 (1–1.28) 0.065 0.19 1.12 (0.96–1.31) 0.14

JAZF1 rs1635852 1.15 (1.06–1.24) 0.0012 1.21 (1.09–1.35) 6.2E-04 1.09 (0.99–1.21) 0.091 0.18 0.89 (0.78–1.02) 0.091

IRF5 rs10488631 1.74 (1.55–1.95) 1.9E-19 1.92 (1.66–2.22) 7.2E-18 1.57 (1.35–1.82) 6.2E-09 0.056 1.23 (1.03–1.48) 0.022

BLK rs2248932 1.24 (1.14–1.35) 2.7E-06 1.28 (1.14–1.43) 2.9E-05 1.2 (1.08–1.34) 0.0011 0.44 1.06 (0.92–1.22) 0.39

KIAA1542 rs4963128 0.84 (0.77–0.92) 1.9E-04 0.75 (0.67–0.85) 3.9E-06 0.92 (0.82–1.03) 0.14 0.014 0.81 (0.70–0.93) 0.0034

ITGAM rs9888739 1.53 (1.37–1.71) 3.4E-13 1.8 (1.56–2.07) 1.1E-15 1.32 (1.15–1.53) 2.1E-04 0.003 1.35 (1.14–1.61) 7.0E-04

UBE2L3 rs5754217 1.22 (1.1–1.35) 1.7E-04 1.38 (1.21–1.57) 1.9E-06 1.09 (0.95–1.24) 0.22 0.011 1.28 (1.08–1.51) 0.0038

IRAK1 rs2269368 1.19 (1.06–1.33) 6.1E-03 1.2 (1.03–1.4) 2.2E-02 1.17 (1.01–1.35) 0.045 0.80 1.02 (0.85–1.23) 0.82

a imputed analysis, lGC = 1.118.
b imputed analysis, lGC = 1.071.
c imputed analysis, lGC = 1.066.
d imputed analysis, lGC = 1.001.
doi:10.1371/journal.pgen.1001323.t005
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Of note, not all of the previously identified SLE susceptibility

SNPs showed differential associations between the anti–dsDNA

subgroups. In fact, the OR for the SNPs in or near FCGR2A,

OX40L, PXK, and UHRF1BP1 were strikingly similar between the

anti–dsDNA + and anti–dsDNA – subgroups. These loci may

represent more generalized SLE susceptibility loci, and their mode

of conferring SLE disease risk is likely independent of anti–dsDNA

autoantibody production. While PTPN22 (rs2476601), IRF5

(rs10488631), and PTTG1 (rs2431099) do not fulfill our criterion

as autoantibody susceptibility loci, the results of the case-only

analysis suggest that these loci may have a stronger effect in anti–

dsDNA + SLE.

Interestingly, far fewer associations were seen in the anti–

dsDNA – SLE analysis. Even in the joint analysis, which had the

most statistical power, only 1 SNP outside of the MHC met our

genome-wide significance threshold—rs10488631 in IRF5. This

finding may be explained by a number of different reasons. SNP

associations for anti–dsDNA – subgroup may be weaker, and thus

would require a larger sample of anti–dsDNA – SLE cases in order

to be identified. Other types of genetic variation or non-genetic

factors, such as environmental exposures [24,25], may have a

stronger influence on susceptibility to anti–dsDNA – SLE. Lastly,

the anti–dsDNA – subgroup may be more clinically heterogeneous

or be comprised of individuals who develop SLE through different

pathogenic (and genetic) mechanisms, thus decreasing our

statistical power to identify genetic associations with this subgroup.

One limitation of this study is the potential misclassification of

anti–dsDNA autoantibody status. This misclassification may have

occurred because the anti–dsDNA autoantibody was assessed by

different assays between the participating case collections, and a

patient’s anti–dsDNA status can vary over the disease course.

However, this misclassification would bias our findings of diffe-

rences between anti–dsDNA + and anti–dsDNA – SLE towards the

null. Moreover, sensitivity analyses performed using the available

longitudinal data showed consistent ORs, suggesting that the

potential misclassification did not greatly influence our results. A

second limitation is that all participants were of European descent.

Limiting this study to those of European descent minimizes

confounding due to genetic differences arising from differences in

ethnicity. Future efforts should study non-European populations

given their increased incidence of SLE [26,27].

In summary, this GWAS of anti–dsDNA autoantibody production

in SLE shows that there are more, and stronger, genetic associations

in anti–dsDNA + SLE compared to anti–dsDNA – SLE. Previously

identified SLE susceptibility loci such as STAT4, ITGAM, KIAA1542,

BANK1, and UBE2L3 are more strongly associated with anti–dsDNA

+ SLE and may confer disease risk through their role in autoantibody

production. Weaker associations in anti–dsDNA – SLE may suggest

that other types of genetic variation or non-genetic factors have a

greater impact on disease risk. Lastly, focusing genetic studies on

clinical disease characteristics decreases the heterogeneity that could

cloud association results and may provide greater insight into

pathogenic disease mechanisms.

Methods

Ethics statement
Written informed consent was obtained from all study

participants and the institutional review board at each collaborat-

ing center approved the study.

Subjects and genotyping
For this study, all SLE cases and healthy controls were of

European descent. All SLE cases fulfilled at least 4 ACR

classification criteria for SLE [5,6]. Figure 1 presents the final

sample sizes in the discovery and replication datasets, and the final

number of SNPs advanced to analysis.

Discovery dataset. The discovery dataset utilized

genotyping data from the GWAS of SLE published by Hom

et al. [8]. All SLE cases (n = 1311) and healthy controls (n = 3340)

were genotyped for over 500,000 single nucleotide polymorphisms

(SNPs) using the Illumina HumanHap550 BeadChip at the

Feinstein Institute of Medical Research (Manhasset, NY). SLE

subjects were participants from case collections at the following

institutions/consortia: University of California, San Francisco

(UCSF, n = 595), Autoimmune Biomarkers Collaborative Network

(n = 301), University of Pittsburgh (n = 305), and the Multiple

Autoimmune Disease Genetics Consortium (n = 110). Control

subjects were obtained from the New York Health Project (NYHP,

n = 294), and from iControlDB (n = 3046, http://www.illumina.

com/science/icontroldb.ilmn).

Replication dataset. The replication dataset utilized

genotyping data from GWAS of SLE published by The

International Consortium on the Genetics of Systemic Lupus

Erythematosus (SLEGEN) [9]. SLE subjects (n = 769) were

obtained from case collections based at the following institutions:

University of Minnesota (n = 255), Oklahoma Medical Research

Foundation (OMRF, n = 239), UCSF (n = 93), University of

California, Los Angeles (n = 85), Uppsala University (n = 62),

and the University of Southern California (USC, n = 37). Controls

(n = 3620) were provided by the following groups/institutions:

iControlDB (n = 3032), NYHP (n = 490), OMRF (n = 90), and

USC (n = 8). All SLE cases and 588 healthy controls in this dataset

were genotyped for 317,501 SNPs on the Illumina Infinium

HumanHap300 BeadChip at the Broad Institute Center for

Genotyping and Analysis (Cambridge, MA). Genotypes for the

remaining 3032 controls were obtained from iControlDB. Since

both datasets utilized controls from the same publicly available

databases, substantial overlap in controls was suspected.

Therefore, we utilized 1142 healthy controls from the breast

cancer study sponsored by the Cancer Genetic Markers of

Susceptibility (CGEMS) project (http://cgems.cancer.gov/data/)

[10] typed on the Illumina HumanHap500 BeadChip as addi-

tional controls for the replication dataset.

Data quality filters. The following data quality filters were

applied separately to the discovery, replication, and CGEMS

datasets: SNPs were removed from analysis if they had greater

than 10% missing genotypes, a minor allele frequency less than

1%, or evidence of deviation from Hardy Weinberg equilibrium in

the controls (p,161024). Subjects were removed from analysis

if their overall genotyping rate was ,90%, were population

outliers (more than 6 standard deviations from the mean along any

of the first 10 principal components described below) or

lacked information regarding anti–dsDNA autoantibody status.

Duplicates and first degree relatives were identified using identity-

by-state measures calculated in PLINK [12] (http://pngu.mgh.

harvard.edu/purcell/plink/), and subjects typed in the discovery

dataset were preferentially retained.

Imputation. We imputed the SNPs present on the Illumina

HumanHap550 BeadChip (used for the discovery dataset) but

absent on the Illumina HumanHap300 BeadChip for the

SLEGEN cases and controls. Imputation was performed using

IMPUTE version 1 [28] (http://www.stats.ox.ac.uk/̃marchini/

software/gwas/impute.html) and used CEPH subjects from the

International HapMap Project release 21 (www.hapmap.org) as

the reference. These SNPs were also imputed in 500 cases and 500

controls randomly selected from the discovery dataset. SNPs were

removed from analysis if the imputation confidence score or the
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concordance between the imputed genotype and the actual

genotype in the randomly selected subgroup was less than 90%.

The data quality filters described above were also applied to the

replication dataset after merging the imputed and assayed

genotypes.

Genetic Risk Score. We calculated a SLE genetic risk score

(GRS) based on 22 SNPs (or their proxy, if the listed SNP was not

genotyped) with previously established evidence of association

described in Gateva et al. [7]. The genetic risk score (GRS) was

defined as the sum of the number of risk alleles for these SNPs. If a

SNP was protective for SLE (OR ,1.0), the major allele was

considered the risk allele. Since omitting sporadic missing data

would underestimate the number of risk alleles, we utilized the

most likely genotype from SNP imputation (using the IMPUTE

version 2 –pgs_miss option) for these calculations.

Anti–dsDNA autoantibody status
Anti–dsDNA autoantibody status for all SLE cases was

determined by medical record review and/or serologic testing of

banked serum. Since anti–dsDNA autoantibody status can

fluctuate with disease activity, a SLE case had to have at least

one definitively positive laboratory result to be considered anti–

dsDNA +. A SLE subject was considered anti–dsDNA – if all

laboratory results in the medical record and serologic testing for

this autoantibody were negative.

Longitudinal anti–dsDNA autoantibody status (i.e., at least 2

individually documented measurements) was available for a

subgroup of SLE cases (n = 722). These data were used for a

sensitivity analysis, where anti–dsDNA + was defined as having at

least 2 positive anti–dsDNA laboratory results in the longitudinal

data, and anti–dsDNA – was defined as having all negative

laboratory results for this autoantibody in the longitudinal data.

Statistical analysis
Three GWAS were performed: anti–dsDNA + SLE subjects

versus healthy controls, anti–dsDNA – SLE subjects versus healthy

controls, and anti–dsDNA + SLE subjects versus anti–dsDNA –

SLE subjects (referred to as the case-only analysis). To determine if

genetic associations were significantly different between the 2 anti–

dsDNA subgroups, tests of heterogeneity were performed for

previously identified SLE susceptibility loci. For these loci, the

case-only analysis was also repeated using only the longitudinal

dataset as a sensitivity analysis. Lastly, a genetic risk score analysis

was conducted using logistic regression.

For each GWAS, associations with anti–dsDNA autoantibody

status were assessed using additive logistic regression models

implemented in PLINK and included the first 5 principal com-

ponents as co-variates to adjust for population stratification.

Principal components were calculated using EIGENSTRAT [29]

(http://genepath.med.harvard.edu/̃ reich/Software.htm). After

removal of SNPs in regions with extensive linkage disequilibrium

on chromosomes 5 (44–51.5 Mb), 6 (25–33.5 Mb), 8 (8–12 Mb),

11 (45–57 Mb), and 17 (40–43 Mb), the remaining SNPs common

to all of the genotyping platforms were used to calculate the

principal components. The first 5 principal components were

selected based on review of the eigenvalues for the first 10

principal components. A plot of the first two principal components

for each individual in the study is shown in Figure S3. P-values for

association were adjusted for the genomic control inflation factor

(lGC) observed for each analysis after accounting for population

stratification (Table S1). Each GWAS also included calculation of

the expected p-value distribution using PLINK to determine the

expected number of statistically significant SNPs.

Analyses were conducted separately for the discovery and

replication datasets. These datasets were then combined into a

‘‘joint dataset’’ for maximal statistical power. The study source

(discovery versus replication dataset) was included as a co-variate

in analyses of the joint dataset. For the discovery and joint

datasets, a p-value of less than 5E-07 was considered statistically

significant, and p-values between 5E-07 and 1E-05 were

considered suggestive of association. Statistically significant SNPs

in the discovery dataset were examined in the replication dataset,

where a p-value of less than 0.005 was considered statistically

significant. Analyses of the discovery, replication, and joint

datasets first used only the assayed SNPs. These analyses were

repeated for the replication and joint datasets to include the

imputed SNPs that passed the data quality filters, since the lGC

was expected to differ in analyses using imputed SNPs.

Based on the publication by Gateva et al. [7], 22 SNPs with

previously established evidence of association with SLE were

analyzed further. For these SNPs (or their proxy, if the listed SNP

was not genotyped), the association results for the SNP in two of

the GWAS conducted above (anti–dsDNA + or - versus healthy

controls) were compared using tests of heterogeneity (STATA 9.0/

SE, College Station, TX). A p-value of less than 0.05 was

considered significant evidence of heterogeneity. The results for

these SNPs were also examined for the case-only analysis

(including the sensitivity analysis with longitudinal data), where

anti–dsDNA + SLE cases were compared to anti–dsDNA – SLE

cases. A p-value of less than 0.05 was considered significant

evidence of a differential association between the 2 subgroups. For

comparison, the association with SLE was assessed using the

logistic regression methods described above.

Associations between the SLE GRS and anti–dsDNA status

were calculated using logistic regression models (STATA 9.0/SE,

College Station, TX). These models utilized the SLE GRS as a

continuous predictor, and adjusted for population stratification

(using the first 5 principal components) and study source.

Supporting Information

Figure S1 Association results for the GWAS of anti-dsDNA +
SLE cases versus healthy controls (joint analysis of genotyped

SNPs). (A) Genomic control inflation factor (l GC)-corrected p-

values with significance line at p = 5E-07. (B) Quantile-quantile

plot with all SNPs and after removing SNPs in the extended MHC

region.

Found at: doi:10.1371/journal.pgen.1001323.s001 (0.24 MB TIF)

Figure S2 Association results for the GWAS of anti-dsDNA –

SLE cases versus healthy controls (joint analysis of genotyped

SNPs). (A) Genomic control inflation factor (lGC)-corrected

p-values with significance line at p = 5E-07, displayed with the

same y-axis range as in Figure S1. (B) Quantile-quantile plot with

all SNPs and after removing SNPs in the extended MHC region.

Found at: doi:10.1371/journal.pgen.1001323.s002 (0.24 MB TIF)

Figure S3 Plot of the first 2 principal components for each

subject included in the study.

Found at: doi:10.1371/journal.pgen.1001323.s003 (0.67 MB TIF)

Table S1 Genomic inflation factors (lGC) for the analyses of

genotyped SNPs prior to and after adjustment for population

stratification using principal components.

Found at: doi:10.1371/journal.pgen.1001323.s004 (0.01 MB PDF)

Table S2 All SNPs with significant (p,5E-07) or suggestive (p

between 5E-07 and 1E-05) evidence for association with anti-

dsDNA + SLE identified in the joint analysis.

Found at: doi:10.1371/journal.pgen.1001323.s005 (0.02 MB PDF)
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