15 research outputs found

    High-Dimensional Phenotyping of Human Myeloid-Derived Suppressor Cells/Tumor-Associated Macrophages in Tissue by Mass Cytometry

    No full text
    International audienceMyeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) are heterogeneous cells that share myeloid markers and are not easily distinguishable in human tumors due to their lack of specific markers. These cells are a major player in the tumor microenvironment and are involved in the prognosis and physiopathology of various tumors. Here is presented a scheme to decipher these cells by mass cytometry

    Computational flow cytometry: helping to make sense of high-dimensional immunology data

    No full text
    Recent advances in flow cytometry allow scientists to measure an increasing number of parameters per cell, generating huge and high-dimensional datasets. To analyse, visualize and interpret these data, newly available computational techniques should be adopted, evaluated and improved upon by the immunological community. Computational flow cytometry is emerging as an important new field at the intersection of immunology and computational biology; it allows new biological knowledge to be extracted from high-throughput single-cell data. This Review provides non-experts with a broad and practical overview of the many recent developments in computational flow cytometry

    Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry

    No full text
    Microglia, the specialized innate immune cells of the CNS, play crucial roles in neural development and function. Different phenotypes and functions have been ascribed to rodent microglia, but little is known about human microglia (huMG) hetero-geneity. Difficulties in procuring huMG and their susceptibility to cryopreservation damage have limited large-scale studies. Here we applied multiplexed mass cytometry for a comprehensive characterization of postmortem huMG (10³– 10-4 cells). We determined expression levels of 57 markers on huMG isolated from up to five different brain regions of nine donors. We identified the phenotypic signature of huMG, which was distinct from peripheral myeloid cells but was comparable to fresh huMG. We detected microglia regional heterogeneity using a hybrid workflow combining Cytobank and R/Bioconductor for multidimensional data analysis. Together, these methodologies allowed us to perform high-dimensional, large-scale immunophenotyping of huMG at the single-cell level, which facilitates their unambiguous profiling in health and disease
    corecore